1.解决vi丢失问题
可以在moba里面找到/etc/下面的profile文件。
下载到自己桌面上,并用记事本打开
用记事本打开~~进行编辑~~~
然后再将这个文件再次拖回到原来的文件位置。
然后source /etc/profile
如果source不能用,就重启一下服务就行~~~~~~
2.完全分布
我们启动了4个节点:namenode、datanode、resourcemanager、nodemanager
Namenode存储文件
MapReduce将计算过程分为两个阶段:Map和Reduce
1)Map阶段并行处理输入数据
2)Reduce阶段对Map结果进行汇总
1)Sqoop:Sqoop是一款开源的工具,主要用于在Hadoop、Hive与传统的数据库(MySql)间进行数据的传递,可以将一个关系型数据库(例如 :MySQL,Oracle 等)中的数据导进到Hadoop的HDFS中,也可以将HDFS的数据导进到关系型数据库中。
2)Flume:Flume是一个高可用的,高可靠的,分布式的海量日志采集、聚合和传输的系统,Flume支持在日志系统中定制各类数据发送方,用于收集数据;
3)Kafka:Kafka是一种高吞吐量的分布式发布订阅消息系统;
4)Storm:Storm用于“连续计算”,对数据流做连续查询,在计算时就将结果以流的形式输出给用户。
5)Spark:Spark是当前最流行的开源大数据内存计算框架。可以基于Hadoop上存储的大数据进行计算。
6)Flink:Flink是当前最流行的开源大数据内存计算框架。用于实时计算的场景较多。
7)Oozie:Oozie是一个管理Hdoop作业(job)的工作流程调度管理系统。
8)Hbase:HBase是一个分布式的、面向列的开源数据库。HBase不同于一般的关系数据库,它是一个适合于非结构化数据存储的数据库。
9)Hive:Hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供简单的SQL查询功能,可以将SQL语句转换为MapReduce任务进行运行。 其优点是学习成本低,可以通过类SQL语句快速实现简单的MapReduce统计,不必开发专门的MapReduce应用,十分适合数据仓库的统计分析。
10)ZooKeeper:它是一个针对大型分布式系统的可靠协调系统,提供的功能包括:配置维护、名字服务、分布式同步、组服务等。
二、Hadoop完全分布式模式
集群配置
注意:NameNode和SecondaryNameNode不要安装在同一台服务器
(2NN备份元数据的,如果放在一台机器上,机器宕机元数据就拿不到)
注意:ResourceManager也很消耗内存,不要和NameNode、SecondaryNameNode配置在同一台机器上。
hadoop100 | hadoop101 | hadoop102 | |
HDFS | NameNode DataNode | DataNode | SecondaryNameNode DataNode |
YARN | NodeManager | ResourceManager NodeManager | NodeManager |
配置文件
配置:hadoop-env.sh(在/opt/module/hadoop-3.1.3/etc/hadoop目录下)
Linux系统中获取JDK的安装路径:
[soft863@ hadoop100 ~]# echo $JAVA_HOME
/opt/module/jdk1.8.0_212
在hadoop-env.sh文件中修改JAVA_HOME 路径:
(在第54行修改)
export JAVA_HOME=/opt/module/jdk1.8.0_212
配置core-site.xml
cd $HADOOP_HOME/etc/hadoop
vim core-site.xml
文件内容如下:
<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<configuration>
<property>
<name>fs.defaultFS</name>
<value>hdfs://hadoop100:9820</value>
</property>
<!-- hadoop.data.dir是自定义的变量,下面的配置文件会用到 -->
<property>
<name>hadoop.data.dir</name>
<value>/opt/module/hadoop-3.1.3/data</value>
</property>
</configuration>
(2)HDFS配置文件
配置hdfs-site.xml
vim hdfs-site.xml
文件内容如下:
<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<configuration>
<!-- namenode数据存放位置 -->
<property>
<name>dfs.namenode.name.dir</name>
<value>file://${hadoop.data.dir}/name</value>
</property>
<!-- datanode数据存放位置 -->
<property>
<name>dfs.datanode.data.dir</name>
<value>file://${hadoop.data.dir}/data</value>
</property>
<!-- secondary namenode数据存放位置 -->
<property>
<name>dfs.namenode.checkpoint.dir</name>
<value>file://${hadoop.data.dir}/namesecondary</value>
</property>
<!-- datanode重启超时时间是30s,解决兼容性问题,跳过 -->
<property>
<name>dfs.client.datanode-restart.timeout</name>
<value>30</value>
</property>
<!-- 设置web端访问namenode的地址 -->
<property>
<name>dfs.namenode.http-address</name>
<value>hadoop100:9870</value>
</property>
<!-- 设置web端访问secondary namenode的地址 -->
<property>
<name>dfs.namenode.secondary.http-address</name>
<value>hadoop102:9868</value>
</property>
</configuration>
(3)YARN配置文件
配置yarn-site.xml
vim yarn-site.xml
文件内容如下:
<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<configuration>
<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>
</property>
<property>
<name>yarn.resourcemanager.hostname</name>
<value>hadoop101</value>
</property>
<property>
<name>yarn.nodemanager .env-whitelist</name>
<value>JAVA_HOME,HADOOP_COMMON_HOME,HADOOP_HDFS_HOME,HADOOP_CONF_DIR,CLASSPATH_PREPEND_DISTCACHE,HADOOP_YARN_HOME,HADOOP_MAPRED_HOME</value>
</property>
</configuration>
(4)MapReduce配置文件
配置mapred-site.xml
vim mapred-site.xml
文件内容如下:
<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<configuration>
<property>
<name>mapreduce.framework.name</name>
<value>yarn</value>
</property>
</configuration>
集群分发
把module目录拷贝到hadoop100:
[root@hadoop102 opt]# cd /opt
[root@hadoop102 opt]# scp -r module/ hadoop100:/opt/
把module目录拷贝到hadoop101:
[root@hadoop102 opt]# rsync -av module hadoop101:/opt/
把 /etc/profile拷贝到hadoop100 hadoop101
[root@hadoop102 opt]# rsync -av /etc/profile hadoop101:/etc
[root@hadoop102 opt]# rsync -av /etc/profile hadoop100:/etc
在hadoop100和hadoop101上分别要进行source /etc/profile
[root@hadoop100 opt]# source /etc/profile
[root@hadoop101 opt]# source /etc/profile
分布式集群格式化
分布式集群第一次启动之前要格式化
格式化之前,要把三个服务器上的hadoop安装目录下的 data目录和logs目录都删掉
[root@hadoop101 opt]# cd /opt/module/hadoop-3.1.3
[root@hadoop101 opt]# rm -rf data
[root@hadoop101 opt]# rm -rf logs
在指定namenode运行的服务器上执行格式化:
(namenode指定在hadoop100上运行的)
[root@hadoop100 hadoop-3.1.3]# hdfs namenode -format
集群单点启动
在每个节点上分别启动下边表格的进程:
hadoop100 | hadoop101 | hadoop102 | |
HDFS | NameNode DataNode | DataNode | SecondaryNameNode DataNode |
YARN | NodeManager | ResourceManager NodeManager | NodeManager |
Hadoop100:
hdfs --daemon start namenode
hdfs --daemon start datanode
yarn --daemon start nodemanager
hadoop101:
yarn --daemon start resourcemanager
hdfs --daemon start datanode
yarn --daemon start nodemanager
hadoop102:
hdfs --daemon start secondarynamenode
hdfs --daemon start datanode
yarn --daemon start nodemanager
1)启动hdfs相关
hdfs --daemon start namenode
hdfs --daemon start datanode
2)启动yarn相关
yarn --daemon start resourcemanager
yarn --daemon start nodemanager