数据结构和算法学习第四节 栈的应用与扩展 波兰表达式

本文介绍了前缀、中缀和后缀表达式,特别是重点讲解了逆波兰表达式(后缀表达式)的计算过程及其在计算器中的应用。此外,还详细阐述了如何将中缀表达式转换为后缀表达式,通过实例展示了转换步骤,并提供了相应的代码实现。
摘要由CSDN通过智能技术生成

前缀、中缀、后缀表达式

前缀表达式

    前缀表达式:也称为波兰表达式,前缀表达式的运算符位于操作数之前,例如(3+4)×5-6对应的前缀表达式就是 - × + 3 4 5 6。 (3+4)×5-6是中缀表达式
    前缀表达式的计算机求值过程
    从右至左扫描表达式,遇到数字时,将数字压入到数栈,遇到运算符时,弹出栈顶的两个数(栈顶元素和次栈顶元素),并使用运算符进行相应的计算,然后将结果入栈,重复上述过程,直到表达式的最左端,最后运算出的值即为表达式的结果。
    举个栗子(3+4)×5-6对应的前缀表达式就是 - × + 3 4 5 6 (这个前缀表达式需要根据中缀表达式的先后顺序得到)
    1、从右至左扫描表达式,将 6 5 4 3 压入数栈。
    2、遇到运算符 + 取出栈顶和次栈顶元素 3 和 4 执行 3+4 并将结果7入栈。
    3、遇到运算符 × 取出栈顶和次栈顶元素 7 和5 执行 7×5 并将结果35入栈。
    4、遇到运算符 - 取出栈顶和次栈顶元素 35 和 6 执行获得最终的结果。

中缀表达式

    1、中缀表达式就是常见的运算表达式,例如:(3+4)×5-6
    2、中缀表达式比较符合人类的思维,也是我们从小训练的思路,但是对于计算机却不好操作,因此,再计算中会将中缀表达式转换成其他表达式来进行操作(一般是转成后缀表达式)。

后缀表达式

    后缀表达式也叫做逆波兰表达式,与前缀表达式相似,只是运算符位于操作数之后,例如 (3+4)×5-6的后缀表达式是: 3 4 + 5 × 6 -
    后缀表达式计算机求值过程
    1、从左至右进行扫描,将 3 和 4 压入栈, 4为栈顶元素 3 为次栈顶元素,扫描到 + 运算符,弹出栈顶和次栈顶元素并执行 3 + 4运算,得到结果7,并将 7 压入栈中。
    2、将5入栈,扫描到 × 取出 栈顶和次栈顶元素 执行 7×5 并将结果35入栈
    3、将6入栈 ,扫描到 - 取出 栈顶和次栈顶元素 执行 35-6 得到结果
    后缀表达是总是 次栈顶元素再前 栈顶元素在后进行运算。跟前缀表达式有区别。

逆波兰计算器(后缀表达式计算)

    需求:先来个简单的,直接输入逆波兰表达式,使用栈计算结果。
    思路分析 就是后缀表达式的求值过程。代码实现

package com.example.data.sparse.stack;

import java.util.Arrays;
import java.util.List;
import java.util.Objects;
import java.util.Stack;
import java.util.stream.Collectors;

/**
 * @author zjt
 * 逆波兰表达式
 */
public class ReversePolishNotation {

    public static void main(String[] args) {
        // 定义一个后缀表达式  为了方便使用,表达式中间使用空格隔开
        // 中缀表达式 : (30+4)×5-6
        String postfixExpression = "30 4 + 5 * 6 - ";
        // 思路 先将表达式放入ArrayList中,配合栈完成计算
        List<String> list = Arrays.stream(postfixExpression.split(" "))
                .filter(Objects::nonNull).collect(Collectors.toList());
        System.out.println(list);
        System.out.println("计算的结果"+cal(list));
    }

    public static int cal(List<String> list) {
        // 创建一个栈
        Stack<String> stack = new Stack<>();
        list.forEach(item -> {
            // 使用正则表达式取出数字
            if (item.matches("\\d+")) { // 匹配多位数
                // 入栈
                stack.push(item);
            } else {
                // 认为是运算符号 pop出两个数并运算
                int n1 = Integer.parseInt(stack.pop()); // 栈顶
                int n2 = Integer.parseInt(stack.pop()); // 次栈顶
                int result;
                // 后缀表达式的运算 总是次栈顶 在前 栈顶在后
                switch (item) {
                    case "+":
                        result = n2 + n1;
                        break;
                    case "-":
                        result = n2 - n1;
                        break;
                    case "*":
                        result = n2 * n1;
                        break;
                    case "/":
                        result = n2 / n1;
                        break;
                    default:
                        throw new RuntimeException("运算符有误");
                }
                stack.push(String.valueOf(result));
            }
        });
        // 最后留在栈中的数据就是运算结果
        return Integer.parseInt(stack.pop());
    }

}

中缀表达式转后缀表达式

     上面的代码是直接计算的后缀表达式,对于我们来说,后缀表达式看起来并不容易。所以还是需要中缀表达式转成后缀表达式去计算。
    中缀表达式转后缀表达式具体步骤如下:
    1、初始化两个栈,运算符栈s1和存储中间结果的栈s2
    2、从左到右扫描中缀表达式
    3、遇到操作数,将其压入s2
    4、遇到运算符时,比较其于s1栈顶运算符的优先级:
        4.1、若s1为空或栈顶运算符为左括号"(",直接将此运算符压入栈s1中。
        4.2、若优先级比栈顶运算符高,也将运算符压入s1栈中。
        4.3、否则,将s1栈顶的运算符弹出并压入的s2中,再次转到4.1与s1中新的栈顶运算符比较。
    5、遇到括号时;
        5.1、如果时左括号"(",直接压入s1
        5.2、如果是右括号,")",则依次弹出s1栈顶的运算符,并压入s2,直到遇到左括号为止。
    6、重复步骤2-5直到表达式的最右边。
    7、将s1中剩余的运算符压入s2
    8、依次弹出s2中元素并输出,结果的逆序即为中缀表达式对应的后缀表达式。
举例:将中缀表达式 1 + ( ( 2 + 3 ) × 4 ) - 5 转成后缀表达式

扫描到的元素s2 栈底到栈顶s1栈底到栈顶说明
11数字,直接入栈
+1+s1为空,运算符直接入栈
(1+ (左括号直接入栈
(1+ ( (左括号直接入栈
21 2+ ( (数字,直接入栈
+1 2+ ( ( +s1栈顶为左括号,运算符直接入栈
31 2 3+ ( ( +数字,直接入栈
)1 2 3 ++ (扫描到右括号弹出运算符直至遇到左括号
×1 2 3 ++ ( ×s1栈顶为左括号,运算符直接入栈
41 2 3 + 4+ ( ×数字,直接入栈
)1 2 3 + 4 ×+扫描到右括号弹出运算符直至遇到左括号
-1 2 3 + 4 × +--与+优先级统计因此需要弹出 + 压入 -
51 2 3 + 4 × + 5-数字,直接入栈
到达最右端1 2 3 + 4 × + 5 -s1中剩余的运算符压入s2

    代码实现

class NotationClient {

    public static void main(String[] args) {
        // 将中缀表达式转成后缀表达式
        // 对 1 + ( ( 2 + 3 ) * 4 ) - 5 -> 1 2  3 + 4  *  + 5 -
        // 对字符串操作不方便,先将字符串转成ArrayList 然后进行操作
        String expression = "101+((2+30)*4)-5";
        // 将中缀表达式转为 list
        List<String> infixExpressionList = toInfixExpression(expression);
        // 字符串转中缀表达式
        System.out.println(infixExpressionList);
        // 后缀表达式
        List<String> list = toPostfixExpressionList(infixExpressionList);
        System.out.println(list);
        // 调用之前的后缀表达式计算
        System.out.println("计算的结果:" + expression + "=" + ReversePolishNotation.cal(list));

    }

    // 中缀表达式转List
    public static List<String> toInfixExpression(String str) {
        int i = 0; // 想当于指针,用于变量中缀表达式字符串
        StringBuilder sb; //用于多位数的拼接
        char c; // 临时变量,没遍历到一个字符存入 c中
        List<String> list = new ArrayList<>();
        do {
            // 如果 是一个非数字加入到list中
            if (!String.valueOf(c = str.charAt(i)).matches("\\d+")) { // 利用正则表达式判断该字符是否是数字
                list.add(String.valueOf(c));
                i++;
            } else {
                // 如果是数字需要考虑拼接问题
                sb = new StringBuilder(); // 先将sb置空
                while (i < str.length() && String.valueOf(c = str.charAt(i)).matches("\\d+")) {
                    sb.append(c);
                    i++;
                }
                list.add(sb.toString());
            }

        } while (i < str.length());
        return list;
    }

    // 中缀表达式List转后缀表达式 1 + ( ( 2 + 3 ) * 4 ) - 5 -> 1 2  3 + 4  *  + 5 -
    public static List<String> toPostfixExpressionList(List<String> infixExpressionList) {
        // 初始化符号栈
        Stack<String> s1 = new Stack<>();
        // 因为栈s2在整个转换过程中没有弹出操作,而且需要逆序输出,这里使用ArrayList 代替。
        List<String> s2 = new ArrayList<>(); // 用于存储中间结果的List
        infixExpressionList.forEach(item -> {
            // 如果式一个数 就直接加入list
            if (item.matches("\\d+")) {
                s2.add(item);
            } else if (item.equals("(")) {
                s1.push(item);
            } else if (item.equals(")")) { // 如果是右括号 需要一直弹出,直到找到第一个左括号
                //  直到有偷看到第一个左括号
                while (!s1.peek().equals("(")) {
                    s2.add(s1.pop());
                }
                s1.pop();// 消除小括号 这个很重要
            } else {
                // 当item的优先级小于等于s1栈顶运算符优先级 将s1栈顶的运算符弹出并加入的s2中,再次转到4.1与s1中新的栈顶运算符比较。
                // 优先级不能有括号
                while (!s1.isEmpty() && !s1.peek().equals("(") && Operation.getValue(s1.peek()) >= Operation.getValue(item)) {
                    s2.add(s1.pop());
                }
                // 将item 入栈
                s1.push(item);
            }
        });
        while (!s1.isEmpty()) {
            s2.add(s1.pop()); // 按照顺序输出就是对于的后缀表达式
        }
        return s2;
    }


}

// 返回优先级
@Data
class Operation {

    private static int ADD = 1; // 加

    private static int SUB = 1; // 减

    private static int MUL = 2; // 乘

    private static int DIV = 2; // 除

    public static int getValue(String opera) {
        switch (opera) {
            case "+":
                return ADD;
            case "-":
                return SUB;
            case "*":
                return MUL;
            case "/":
                return DIV;
            default:
                throw new RuntimeException("运算符有误");
        }
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值