能看懂的Pandas教程

这篇博客是为非专业人员介绍Pandas的简单教程,通过Jupyter Notebook讲解如何安装环境、加载库、读取数据,以及进行数据操作和绘图。适合有一定生活经验的人学习使用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

[十分钟学习pandas](http://www.cnblogs.com/chaosimple/p/4153083.html)

现充也能看懂的Pandas教程

16 Nov 2015

本文的目的在于教给 现充 我一点人生的经验,介绍一些 Jupyter Notebook 的良好体验。

知识准备:具有一定的人生经验

-1. Jupyter Pandas 是什么

Jupyter

一个在线 Python 编程环境,每行的代码在敲击 Shift + Enter 后单独执行,便于初学者快速掌握编程语言。 Jupyter 可以完美利用 Python 丰富的数据分析和科学计算的工具库,实现一些非大数据的分析计算需求。

Pandas

用于操作行列数据,方便地实现各种数据分析的形式。

Jupyter 的限制

由于 Python 本身的限制,如果需要计算的数据太大,而无法一次载入内存,则需要分块导入数据,并对查询做相应的修改。

0. 安装本地环境

(现充请跳过本节,直接访问线上地址,点击 Welcome to Python.ipynb

在命令行中输入:

pip install jupyter
pip install pandas
pip install matplotlib

cd到指定目录,启动:

jupyter notebook

1. 加载工具库

在 Jupyter Notebook 中,Pandas 是操作数据的工具,matplotlib 是执行作图的工具。

在 Cell 中输入并执行:

import pandas as pd
import matplotlib.pyplot as plt

2. 读取数据文件或数据库

在 Cell 中输入并执行:

df = pd.read_csv('./data.csv', index_col='id')

由于在线环境无法创建文件,也可以执行以下语句创建一个 DataFrame

dates = pd.date_range('20130101', 
<think>好的,用户需要基础知识入门教程,而且可能作为新手需要基础概念解释。首先,得确定用户的具体领域,但问题中没有明确提到,所以可能需要覆盖通用入门知识。接下来,应该调用网络搜索工具查找相关的基础教程信息,确保内容权威且适合新手。 需要整合搜索结果,生成结构清晰的回答。根据任务要求,分几个方法或步骤,每个步骤换行。避免使用第一人称和步骤词汇,所以可能需要用分类或主题来组织内容。比如分成编程、数学、数据分析等基础部分,每个部分提供核心概念和示例。 注意代码和公式的格式,检查是否有需要插入的地方。比如编程部分可能会有代码示例,数学部分可能有公式。确保行内公式用$包裹,独立公式用$$,代码用三个反引号加语言类型。 然后,生成相关问题部分。必须基于用户的原问题和回答内容,至少三个相关问题。可能需要考虑用户后续可能遇到的问题,比如如何选择编程语言、学习路径推荐、免费资源推荐等。确保问题有逻辑关联,帮助用户深入探索。 最后,检查所有格式要求是否严格遵循,尤其是相关问题部分的标题和标号格式,避免任何错误。确保回答实用、清晰,符合新手的理解水平。</think>根据基础知识入门需求,整理以下核心概念及学习路径: **编程基础** 变量、数据类型和条件语句是编程的核心要素。以Python为例: ```python # 变量与条件语句示例 age = 18 if age >= 18: print("成年人") ``` **数学基础** 线性代数中的向量运算公式: $$\vec{a} \cdot \vec{b} = \sum_{i=1}^{n} a_i b_i$$ 概率论基础公式: $$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$ **数据分析入门** 掌握数据清洗与可视化技术: ```python import pandas as pd import matplotlib.pyplot as plt data = pd.read_csv('dataset.csv') plt.plot(data['x'], data['y']) plt.show() ``` **网络基础知识** 理解IP地址与DNS的关系: - IPv4地址格式:192.168.1.1 - DNS解析过程:域名→IP地址转换 **机器学习基础** 监督学习流程: 1. 数据预处理 2. 模型训练(如线性回归) 3. 模型评估(使用MSE指标) $$MSE = \frac{1}{n}\sum_{i=1}^{n}(y_i - \hat{y}_i)^2$$
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值