对比xlwt,openpyxl,xlrd
图示
引用别人的一张图:
- xlwt不支持写xlsx文件。
- openpyxl不支持读xls文件。
- xlrd支持读xls,xlsx文件。
- 推荐读文件用xlrd,写文件用openpyxl。
实测
准备了3.64 MB的excel文件。
from functools import wraps
from time import time
import openpyxl
import xlrd
def timer(func):
@wraps(func)
def inner(*args, **kwargs):
tmp = time()
res = func(*args, **kwargs)
print(time() - tmp)
return res
return inner
@timer
def openpyxl_test():
fp = openpyxl.open('题库.xlsx')
sheet = fp['xxx']
print(sheet.dimensions)
for rows in sheet.iter_rows(min_row=1, max_row=8122, min_col=1, max_col=13):
for cell in rows:
pass
pass
@timer
def xlrd_test():
fp = xlrd.open_workbook('题库.xlsx')
sheet = fp.sheet_by_name('xxx')
print(sheet.nrows, sheet.ncols)
for index in range(sheet.nrows):
row = sheet.row_values(index)
pass
if __name__ == '__main__':
openpyxl_test()
>>>
A1:M8122
7.71000599861145
xlrd_test()
>>>
8122 13
4.619961738586426
读取8000行数据,openpyxl用时7.71秒,xlrd用时4.62秒。
xlrd&xlwt读写操作
区别:
- openyxl:可以对xlsx、xlsm文件进行读、写操作,主要对Excel2007年之后的版本(.xlsx)
- xlrd:可以对xlsx、xls、xlsm文件进行读操作且效率高
- xlwt:主要对xls文件进行写操作且效率高,但是不能执行xlsx文件
安装
读:pip3 install xlrd==1.2.0
(高版本不支持xlsx)
写:pip install xlwt
读操作
import xlrd
# 读取文件
df = xlrd.open_workbook('test.xlsx')
# 显示所有sheet
print(df.sheet_names())
>>> ['Sheet1', 'Sheet2', 'Sheet3']
# 获取所有sheet对象
print(df.sheets())
[<xlrd.sheet.Sheet object at 0x000001995152D7C8>, <xlrd.sheet.Sheet object at 0x0000019951567648>, <xlrd.sheet.Sheet object at 0x0000019951567988>]
# 获取sheet对象
table=df.sheets()[0]
table=df.sheet_by_index(0)
table=df.sheet_by_name('name')
# 获取行列
row=table.nrows
col=table.ncols
# 获取整行,整列的值,行列值从0开始
table.row_values(num1)
table.column_values(num2)
# 获取单元格的值
cell=table.cell(0,0).value
写操作
import xlwt
# 创建excel文件
df2 = xlwt.Workbook()
# 新建表
table2=df2.add_sheet('name')
table2=df2.add_sheet('name',cell_overwrite_ok=True) 允许重复写一个单元格
# 写入数据
table2.write(0,0,'Python')
# 保存
df2.save('data2.xls')
excel时间处理xldate_as_tuple
在使用xlrd读取Excel表格中的日期格式时,读取出来的是一个浮点数,导致不能正确使用,而xldate_as_tuple方法可以很好地解决这个问题。
xlrd.xldate_as_tuple(xldate,datemode)
参数 xldate: 要处理的单元格值
参数 datemode:时间基准(0代表1900-01-01为基准,1代表1904-01-01为基准);常使用1900为基准
返回值:返回一个元组,类似于(year,month,day,hour,minute,nearest_second)
但是,仅适用于date类型的excel单元格,不适用于time类型的单元格
xlrd.xldate.xldate_as_datetime(xldate,datemode)
参数 xldate: 要处理的单元格值
参数 datemode:时间基准(0代表1900-01-01为基准,1代表1904-01-01为基准);常使用1900为基准
返回值:datetime对象,格式 year-month-day hour:minute:second
openpyxl读写操作
前提知识:
测试数据:
openpyxl
安装 :pip install openpyxl
读取
from openpyxl import load_workbook
# 导入excel文件
workbook = load_workbook(filename='test.xlsx’)
或
workbook = open("test.xlsx")
# 打印该文件所有表名
print(workbook.sheetnames)
# 切换表
sheet = workbook['sheet1']
# 打印该表单元格规模
print(sheet.dimensions)
# 取该表的某个单元格
cell = sheet['A1']
# 打印该单元格的坐标
print(cell.row, cell.column, cell.coordinate)
# 获取多个单元格
for cell in sheet['A1:A10']
for cell in sheet['A1:G10']
for rows in sheet.iter_rows(min_row=1,max_row=5,min_col=2,max_col=7):
for cell in rows:
print(cell.value,end='')
print()
# 获取单元格对象的值,[必须是单元格对象],如果取到元组是点不出value的
print(cell.value)
写入
# 保存
workbook.save('test.xlsx')
# 修改
cell = sheet['A1']
cell.value = 'A1'
# 追加到最后最后一行
sheet.append([15, None, None, 14, 'qq.com'])
# 添加公式
sheet['K11'] = '=AVERAGE(K1:K10)'
# 在第二行处增加4行
sheet.insert_rows(2,4)
# 在第二列处增加4列
sheet.insert_cols(2,4)
# 删除行
sheet.delete_rows(2,4)
# 删除列
sheet.delete_cols(2,4)
# 最后一定要保存一遍
workbook.save('test.xlsx')
# 创建excel
from openpyxl import Workbook
workbook = Workbook()
openpyxl优化模式
有时,你可能需要打开或写入极端大的 XLSX 文件,但通用的 openpyxl 程序无法处理这么大的负载。 幸运的是,有两种模式可以使你在(几乎)恒定的内存消耗下读写无限量的数据。
-
只读模式:有时,你可能需要打开或写入极端大的 XLSX 文件,但通用的 openpyxl 程序无法处理这么大的负载。 幸运的是,有两种模式可以使你在(几乎)恒定的内存消耗下读写无限量的数据。
from openpyxl import load_workbook wb = load_workbook(filename='large_file.xlsx', read_only=True) ws = wb['big_data'] for row in ws.rows: for cell in row: print(cell.value)
-
只写模式:常规的 openpyxl.worksheet.worksheet.Worksheet 被替代成更快的 openpyxl.worksheet._write_only.WriteOnlyWorksheet 。 当你想导出大量数据的时候请确保安装了 lxml 库.
>>> from openpyxl import Workbook >>> wb = Workbook(write_only=True) >>> ws = wb.create_sheet() >>> >>> # now we'll fill it with 100 rows x 200 columns >>> >>> for irow in range(100): ... ws.append(['%d' % i for i in range(200)]) >>> # save the file >>> wb.save('new_big_file.xlsx') # doctest: +SKIP
和普通工作簿不同的是,新创建的只写工作簿没有任何工作表;工作表只能由 create_sheet() 方法进行创建。
在只读工作簿中,只能由 append() 来添加行。无法使用 cell() 或 iter_rows() 对任意位置的单元进行读取或写入。
可以导出不限量的数据(即使超过 Excel 的处理上限),同时内存使用量小于10Mb。
一个只写工作簿只能保存一次。之后如果任何尝试保存和添加数据(append())的操作都会会引发 openpyxl.utils.exceptions.WorkbookAlreadySaved 错误。
导出大数据,但内存又不够用的时候,可以给openpyxl加上只读或只写属性,并且安装lxml库(因为excel解压后也是xml格式的文件),按照官方文档的说法可以增加一些读写速度,但对于内存使用量小于10Mb,我感觉不可信,导出150MB的excel文件,kubectl top内存占用5G+。
另外可以手动调用gc去回收一些引用计数为0的变量,
import gc
# 调用del引用计数-1
del wb, ws
# 触发垃圾回收
gc.collect()
pandas
openpyxl,xlrd 都只可以读取filename,而不能从io种读取excel和csv,例如,无法将request.content作为输入源,所以引入了pandas。
用途
-
Pandas 可以从各种文件格式比如 CSV、JSON、SQL、Microsoft Excel 导入数据。
-
Pandas 可以对各种数据进行运算操作,比如归并、再成形、选择,还有数据清洗和数据加工特征。
-
Pandas 广泛应用在学术、金融、统计学等各个数据分析领域。
数据结构
Pandas 的主要数据结构是 Series (一维数据)与 DataFrame(二维数据),这两种数据结构足以处理金融、统计、社会科学、工程等领域里的大多数典型用例。
Series 是一种类似于一维数组的对象,它由一组数据(各种Numpy数据类型)以及一组与之相关的数据标签(即索引)组成。
DataFrame 是一个表格型的数据结构,它含有一组有序的列,每列可以是不同的值类型(数值、字符串、布尔型值)。DataFrame 既有行索引也有列索引,它可以被看做由 Series 组成的字典(共同用一个索引)。
Pandas 数据结构 - DataFrame
DataFrame 是一个表格型的数据结构,它含有一组有序的列,每列可以是不同的值类型(数值、字符串、布尔型值)。DataFrame 既有行索引也有列索引,它可以被看做由 Series 组成的字典(共同用一个索引)。
DataFrame 构造方法如下:
pandas.DataFrame( data, index, columns, dtype, copy)
参数说明:
- data:一组数据(ndarray、series, map, lists, dict 等类型)。
- index:索引值,或者可以称为行标签。
- columns:列标签,默认为 RangeIndex (0, 1, 2, …, n) 。
- dtype:数据类型。
- copy:拷贝数据,默认为 False。
- Pandas DataFrame 是一个二维的数组结构,类似二维数组。
使用列表创建
import pandas as pd
data = [['Google',10],['Codebaoku',12],['Wiki',13]]
df = pd.DataFrame(data,columns=['Site','Age'])
print(df)
输出结果如下:
Site Age
0 Google 10
1 Codebaoku 12
2 Wiki 13
使用 ndarrays 创建
import pandas as pd
data = {'Site':['Google', 'Codebaoku', 'Wiki'], 'Age':[10, 12, 13]}
df = pd.DataFrame(data)
print (df)
结果与上一致。
使用字典创建
import pandas as pd
data = [{'a': 1, 'b': 2}, {'a': 5, 'b': 10, 'c': 20}]
df = pd.DataFrame(data)
print(df)
输出结果如下:
a b c
0 1 2 NaN
1 5 10 20.0
没有对应的部分数据为 NaN。
Pandas 可以使用 loc 属性返回指定行的数据,如果没有设置索引,第一行索引为 0,第二行索引为 1,以此类推:
import pandas as pd
data = {
"calories": [420, 380, 390],
"duration": [50, 40, 45]
}
# 数据载入到 DataFrame 对象
df = pd.DataFrame(data)
# 返回第一行
print(df.loc[0])
# 返回第二行
print(df.loc[1])
输出结果如下:
calories 420
duration 50
Name: 0, dtype: int64
calories 380
duration 40
Name: 1, dtype: int64
注意:返回结果其实就是一个 Pandas Series 数据。
也可以返回多行数据,使用 [[ … ]] 格式,… 为各行的索引,以逗号隔开:
import pandas as pd
data = {
"calories": [420, 380, 390],
"duration": [50, 40, 45]
}
# 数据载入到 DataFrame 对象
df = pd.DataFrame(data)
# 返回第一行和第二行
print(df.loc[[0, 1]])
输出结果为:
calories duration
0 420 50
1 380 40
注意:返回结果其实就是一个 Pandas DataFrame 数据。
可以指定索引值,如下范例:
import pandas as pd
data = {
"calories": [420, 380, 390],
"duration": [50, 40, 45]
}
df = pd.DataFrame(data, index = ["day1", "day2", "day3"])
print(df)
输出结果为:
calories duration
day1 420 50
day2 380 40
day3 390 45
Pandas 可以使用 loc 属性返回指定索引对应到某一行:
import pandas as pd
data = {
"calories": [420, 380, 390],
"duration": [50, 40, 45]
}
df = pd.DataFrame(data, index = ["day1", "day2", "day3"])
# 指定索引
print(df.loc["day2"])
输出结果为:
calories 380
duration 40
Name: day2, dtype: int64
Pandas CSV 文件
import pandas
from io import BytesIO
# 模拟request
buf = BytesIO()
with open("./test.csv", "rb") as f:
for line in f:
buf.write(line)
# 指针回溯
buf.seek(0)
res = pandas.read_csv(buf)
print(res)
输出结果如下:
col1 col2 col3
0 1 2 3
1 4 5 6
也可以使用 to_csv() 方法将 DataFrame 存储为 csv 文件:
import pandas as pd
# 三个字段 name, site, age
nme = ["Google", "Codebaoku", "Taobao", "Wiki"]
st = ["www.google.com", "www.codebaoku.com", "www.taobao.com", "www.wikipedia.org"]
ag = [90, 40, 80, 98]
# 字典
dict = {'name': nme, 'site': st, 'age': ag}
df = pd.DataFrame(dict)
# 保存 dataframe
df.to_csv('site.csv')
使用
数据表信息查看
维度查看:
df.shape
数据表基本信息(维度、列名称、数据格式、所占空间等):
df.info()
每一列数据的格式:
df.dtypes
某一列格式:
df['B'].dtype
空值:
df.isnull()
查看某一列空值:
df['B'].isnull()
查看某一列的唯一值:
df['B'].unique()
查看数据表的值:
df.values
查看列名称:
df.columns
查看前5行数据、后5行数据:
df.head() #默认前5行数据
df.tail() #默认后5行数据
数据表清洗
1、用数字0填充空值:
df.fillna(value=0)
2、使用列prince的均值对NA进行填充:
df['prince'].fillna(df['prince'].mean())
3、清除city字段的字符空格:
df['city']=df['city'].map(str.strip)
4、大小写转换:
df['city']=df['city'].str.lower()
5、更改数据格式:
df['price'].astype('int')
6、更改列名称:
df.rename(columns={'category': 'category-size'})
7、删除后出现的重复值:
df['city'].drop_duplicates()
8 、删除先出现的重复值:
df['city'].drop_duplicates(keep='last')
9、数据替换:
df['city'].replace('sh', 'shanghai')
数据预处理
df1=pd.DataFrame({"id":[1001,1002,1003,1004,1005,1006,1007,1008],
"gender":['male','female','male','female','male','female','male','female'],
"pay":['Y','N','Y','Y','N','Y','N','Y',],
"m-point":[10,12,20,40,40,40,30,20]})
-
数据表合并
1.1 mergedf_inner=pd.merge(df,df1,how='inner') # 匹配合并,交集 df_left=pd.merge(df,df1,how='left') # df_right=pd.merge(df,df1,how='right') df_outer=pd.merge(df,df1,how='outer') #并集
1.2 append
result = df1.append(df2)
1.3 join
result = left.join(right, on='key')
1.4 concat
pd.concat(objs, axis=0, join='outer', join_axes=None, ignore_index=False, keys=None, levels=None, names=None, verify_integrity=False, copy=True)
- objs︰ 一个序列或系列、 综合或面板对象的映射。如果字典中传递,将作为键参数,使用排序的键,除非它传递,在这种情况下的值将会选择
(见下文)。任何没有任何反对将默默地被丢弃,除非他们都没有在这种情况下将引发 ValueError。 - axis: {0,1,…},默认值为 0。要连接沿轴。
- join: {‘内部’、 ‘外’},默认 ‘外’。如何处理其他 axis(es) 上的索引。联盟内、 外的交叉口。
- ignore_index︰ 布尔值、 默认 False。如果为 True,则不要串联轴上使用的索引值。由此产生的轴将标记
0,…,n-1。这是有用的如果你串联串联轴没有有意义的索引信息的对象。请注意在联接中仍然受到尊重的其他轴上的索引值。 - join_axes︰ 索引对象的列表。具体的指标,用于其他 n-1 轴而不是执行内部/外部设置逻辑。 keys︰
序列,默认为无。构建分层索引使用通过的键作为最外面的级别。如果多个级别获得通过,应包含元组。 - levels︰ 列表的序列,默认为无。具体水平 (唯一值) 用于构建多重。否则,他们将推断钥匙。
- names︰ 列表中,默认为无。由此产生的分层索引中的级的名称。
- verify_integrity︰ 布尔值、 默认 False。检查是否新的串联的轴包含重复项。这可以是相对于实际数据串联非常昂贵。
- 副本︰ 布尔值、 默认 True。如果为 False,请不要,不必要地复制数据。
例子:1.frames = [df1, df2, df3] 2.result = pd.concat(frames)
- objs︰ 一个序列或系列、 综合或面板对象的映射。如果字典中传递,将作为键参数,使用排序的键,除非它传递,在这种情况下的值将会选择
2、设置索引列
df_inner.set_index('id')
3、按照特定列的值排序:
df_inner.sort_values(by=['age'])
4、按照索引列排序:
df_inner.sort_index()
5、如果prince列的值>3000,group列显示high,否则显示low:
df_inner['group'] = np.where(df_inner['price'] > 3000,'high','low')
6、对复合多个条件的数据进行分组标记
df_inner.loc[(df_inner['city'] == 'beijing') & (df_inner['price'] >= 4000), 'sign']=1
7、对category字段的值依次进行分列,并创建数据表,索引值为df_inner的索引列,列名称为category和size
pd.DataFrame((x.split('-') for x in df_inner['category']),index=df_inner.index,columns=['category','size'])
8、将完成分裂后的数据表和原df_inner数据表进行匹配
df_inner=pd.merge(df_inner,split,right_index=True, left_index=True)
数据提取
主要用到的三个函数:loc,iloc和ix,loc函数按标签值进行提取,iloc按位置进行提取,ix可以同时按标签和位置进行提取。
1、按索引提取单行的数值
df_inner.loc[3]
2、按索引提取区域行数值
df_inner.iloc[0:5]
3、重设索引
df_inner.reset_index()
4、设置日期为索引
df_inner=df_inner.set_index('date')
5、提取4日之前的所有数据
df_inner[:'2013-01-04']
6、使用iloc按位置区域提取数据
df_inner.iloc[:3,:2] #冒号前后的数字不再是索引的标签名称,而是数据所在的位置,从0开始,前三行,前两列。
7、适应iloc按位置单独提起数据
df_inner.iloc[[0,2,5],[4,5]] #提取第0、2、5行,4、5列
8、使用ix按索引标签和位置混合提取数据
df_inner.ix[:'2013-01-03',:4] #2013-01-03号之前,前四列数据
9、判断city列的值是否为北京
df_inner['city'].isin(['beijing'])
10、判断city列里是否包含beijing和shanghai,然后将符合条件的数据提取出来
df_inner.loc[df_inner['city'].isin(['beijing','shanghai'])]
11、提取前三个字符,并生成数据表
pd.DataFrame(df_inner['category'].str[:3])
数据筛选
使用与、或、非三个条件配合大于、小于、等于对数据进行筛选,并进行计数和求和。
1、使用“与”进行筛选
df_inner.loc[(df_inner['age'] > 25) & (df_inner['city'] == 'beijing'), ['id','city','age','category','gender']]
2、使用“或”进行筛选
df_inner.loc[(df_inner['age'] > 25) | (df_inner['city'] == 'beijing'), ['id','city','age','category','gender']].sort(['age'])
3、使用“非”条件进行筛选
df_inner.loc[(df_inner['city'] != 'beijing'), ['id','city','age','category','gender']].sort(['id'])
4、对筛选后的数据按city列进行计数
df_inner.loc[(df_inner['city'] != 'beijing'), ['id','city','age','category','gender']].sort(['id']).city.count()
5、使用query函数进行筛选
df_inner.query('city == ["beijing", "shanghai"]')
6、对筛选后的结果按prince进行求和
df_inner.query('city == ["beijing", "shanghai"]').price.sum()
数据汇总
主要函数是groupby和pivote_table
1、对所有的列进行计数汇总
df_inner.groupby(‘city’).count()
2、按城市对id字段进行计数
df_inner.groupby(‘city’)[‘id’].count()
3、对两个字段进行汇总计数
df_inner.groupby([‘city’,‘size’])[‘id’].count()
4、对city字段进行汇总,并分别计算prince的合计和均值
df_inner.groupby(‘city’)[‘price’].agg([len,np.sum, np.mean])
数据统计
数据采样,计算标准差,协方差和相关系数
1、简单的数据采样
df_inner.sample(n=3)
2、手动设置采样权重
weights = [0, 0, 0, 0, 0.5, 0.5]
df_inner.sample(n=2, weights=weights)
3、采样后不放回
df_inner.sample(n=6, replace=False)
4、采样后放回
df_inner.sample(n=6, replace=True)
5、 数据表描述性统计
df_inner.describe().round(2).T #round函数设置显示小数位,T表示转置
6、计算列的标准差
df_inner[‘price’].std()
7、计算两个字段间的协方差
df_inner[‘price’].cov(df_inner[‘m-point’])
8、数据表中所有字段间的协方差
df_inner.cov()
9、两个字段的相关性分析
df_inner[‘price’].corr(df_inner[‘m-point’]) #相关系数在-1到1之间,接近1为正相关,接近-1为负相关,0为不相关
10、数据表的相关性分析
df_inner.corr()
数据输出
分析后的数据可以输出为xlsx格式和csv格式
1、写入Excel
df_inner.to_excel(‘excel_to_python.xlsx’, sheet_name=‘bluewhale_cc’)
2、写入到CSV
df_inner.to_csv(‘excel_to_python.csv’)