-
KNN 算法
KNN算法就是通过不断计算输入的 测试数据 和 训练数据集 之间的 距离来 判断测试数据更可能是 属于哪一类。
如果把测试数据和训练数据集中的每个数据都简单的看成指标坐标轴里的一个点的话,就可以通过一个简单的 两点之间的距离 公式计算,
即: (注:这个公式里设有点P1(x1,y1)、P2(x2,y2);x1,y1和x2,y2可以分别看做点P1和P2关于X轴、Y轴的特征)
在实际应用中会碰到很多数据有多个特征,这里只需要把上面那个公式拓展下:
KNN算法就是通过不断计算输入的 测试数据 和 训练数据集 之间的 距离来 判断测试数据更可能是 属于哪一类。
如果把测试数据和训练数据集中的每个数据都简单的看成指标坐标轴里的一个点的话,就可以通过一个简单的 两点之间的距离 公式计算,
即: (注:这个公式里设有点P1(x1,y1)、P2(x2,y2);x1,y1和x2,y2可以分别看做点P1和P2关于X轴、Y轴的特征)
在实际应用中会碰到很多数据有多个特征,这里只需要把上面那个公式拓展下: