K-邻近算法(KNN)

本文详细介绍了K-近邻算法(KNN)的工作原理,包括如何计算测试数据与训练数据之间的距离,并探讨了KNN在多特征情况下的应用。文章指出KNN算法具有高精度、对异常值不敏感的优点,但空间和计算复杂度较高。通过实例展示了KNN在手写数字识别中的应用,讨论了不同K值对算法准确率的影响,并提供了代码实现。
摘要由CSDN通过智能技术生成
  • KNN 算法

KNN算法就是通过不断计算输入的 测试数据 和 训练数据集 之间的 距离来 判断测试数据更可能是 属于哪一类。

如果把测试数据和训练数据集中的每个数据都简单的看成指标坐标轴里的一个的话,就可以通过一个简单的 两点之间的距离 公式计算,

即:d = \sqrt{(x_{1}-x_{2})^{2}+(y_{1}-y_{2})^{2}}    (注:这个公式里设有点P1(x1,y1)、P2(x2,y2);x1,y1和x2,y2可以分别看做点P1和P2关于X轴、Y轴的特征)

 

在实际应用中会碰到很多数据有多个特征,这里只需要把上面那个公式拓展下:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值