KNN算法-搜索最优超参数:n_neighbors /weight/p

在本文中,将选取正确率作为衡量标准,自行实现搜索最优超参数,而非直接调用sklearn中的GridSearchCV。

先简单介绍KNN中的三个超参数:

超参数为:n_neighbors /weight/p(只有当weight=distance的时候,p值才有意义)

  1. n_neighbors:取邻近点的个数k。k取1-9测试
  2. weight:距离的权重;uniform:一致的权重;distance:距离的倒数作为权重
  3. p:闵可斯基距离的p值; p=1:即欧式距离;p=2:即曼哈顿距离;p取1-6测试
#超参数为:n_neighbors /weight/p
# n_neighbors:取邻近点的个数k。k取1-9测试
#weight:距离的权重;uniform:一致的权重;distance:距离的倒数作为权重
#p:闵可斯基距离的p值; p=1:即欧式距离;p=2:即曼哈顿距离;p取1-6测试
#只有当weight=distance的时候,p值才有意义

def searchBestPar():
    bestScore=0
    bestK=-1
    bestWeight=""

    # weight==uniform时
    for k in range(1,10):
        clf = KNeighborsClassifier(n_neighbors=k,weights="uniform")
        clf.fit(trainX,trainY)
        scor=clf.score(testX,testY)
        if scor > bestScore:
            bestScore=scor
            bestK=k
            bestWeight="uniform"

    # weight==distance时
    for k in range(1,10):
        for p in range(1,7):
            clf=KNeighborsClassifier(n_neighbors=k,weights="distance",p=p)
            clf.fit(trainX,trainY)
            scor = clf.score(testX, testY)
            if scor > bestScore:
                bestScore = scor
                bestK = k
                bestWeight = "distance"

    print("the best n_neighbors", bestK)
    print("the best weights", bestWeight)
    print("the best p", p)

if __name__ == '__main__':
    iris=datasets.load_iris()
    trainX, testX, trainY, testY = train_test_split(iris.data,iris.target)
    searchBestPar()
 

 

 

 

 

 

<think>好的,我现在需要回答用户关于KNN算法超参数选择与调优的问题。首先,我得回忆一下KNN的基本原理常见的超参数有哪些。KNN是一种基于实例的学习算法,分类或回归时依赖于最近的k个邻居。主要的超参数包括k值、距离度量方法(如欧氏距离、曼哈顿距离等)、权重分配方式(统一权重或距离加权)以及是否考虑特征权重等。 接下来,我需要确定如何结构清晰地组织这些信息。用户可能想了解每个超参数的作用以及如何选择它们。同时,用户提到了调优方法,比如交叉验证网格搜索,这需要结合引用中的内容来阐述。 首先,应该解释每个超参数的意义。例如,k值控制了邻居的数量,较小的k可能导致过拟合,较大的k可能欠拟合。距离度量的选择影响相似度的计算,不同的问题可能需要不同的距离函数。权重分配可以调整近邻的影响程度,距离加权的KNN可能在某些情况下表现更好。 然后,调优方法部分需要介绍交叉验证,尤其是k折交叉验证,以及网格搜索如何系统地遍历参数组合。引用中提到GridSearchCV这个API,应该具体说明其使用方法,比如参数网格的设定交叉验证的折数。 还需要比较传统手工调参自动调参的优缺点,如传统方法耗时且不一定找到最优解,而网格搜索结合交叉验证更高效可靠。此外,引用中的资料提到模型选择与调优的步骤,可能需要分点说明流程。 最后,生成相关的问题时,要确保问题覆盖用户可能进一步感兴趣的方面,比如不同距离度量的影响、交叉验证的具体步骤、实际应用中的例子,以及与其他算法的对比等。 需要注意的是,回答中所有数学表达式要用$...$格式,如欧氏距离公式$d(x,y) = \sqrt{\sum_{i=1}^n (x_i - y_i)^2}$,独立公式用$$...$$。同时,引用标识要自然添加,比如在提到交叉验证时引用对应的文献。 现在,需要将这些思考整理成结构化的回答,确保每个部分清晰,并符合用户的要求。检查是否有遗漏的超参数或调优方法,以及是否引用了正确的来源。此外,代码示例部分可能需要展示如何使用GridSearchCV,这需要确保语法正确,并适当注释。</think>### KNN算法中的超参数选择与调优 #### 一、KNN的核心超参数及作用 1. **K值(邻居数量)** - 控制分类或回归时参考的最近邻数量。 - **过小**(如$k=1$)易受噪声影响导致过拟合;**过大**(如$k=50$)可能忽略局部特征导致欠拟合[^2]。 2. **距离度量(metric)** - 定义样本间相似度的计算方式,常见方法: - 欧氏距离:$$d(x,y) = \sqrt{\sum_{i=1}^n (x_i - y_i)^2}$$ - 曼哈顿距离:$$d(x,y) = \sum_{i=1}^n |x_i - y_i|$$ - 不同度量对高维数据或稀疏数据的敏感度不同[^1]。 3. **权重分配(weights)** - 统一权重:所有邻居贡献相同。 - 距离加权:近邻权重更大,例如$\text{weight} = \frac{1}{d(x,y)}$,缓解噪声干扰[^3]。 4. **算法实现方式(algorithm)** - 可选暴力搜索(brute)、KD树(kd_tree)或球树(ball_tree),影响计算效率,尤其在大数据集上[^5]。 --- #### 二、超参数调优方法 1. **交叉验证(Cross-Validation)** - **原理**:将数据集划分为$k$个子集,轮流用$k-1$个子集训练,剩余1个验证,重复$k$次取平均性能。 - **作用**:减少过拟合风险,评估超参数泛化能力。 2. **网格搜索(Grid Search)** - **步骤**: 1. 定义超参数候选值(如$k \in \{3,5,7\}$,距离度量$\in \{\text{欧氏, 曼哈顿}\}$)。 2. 遍历所有组合,通过交叉验证选出最优组合。 - **API示例**(基于scikit-learn): ```python from sklearn.model_selection import GridSearchCV param_grid = {'n_neighbors': [3,5,7], 'metric': ['euclidean', 'manhattan']} grid_search = GridSearchCV(KNeighborsClassifier(), param_grid, cv=5) grid_search.fit(X_train, y_train) print("最优参数:", grid_search.best_params_) ``` 3. **随机搜索(Random Search)** -超参数空间中随机采样,适用于参数范围较大时,比网格搜索更高效[^4]。 --- #### 三、实际应用建议 - **数据标准化**:KNN对特征尺度敏感,需先进行归一化或标准化。 - **维度灾难**:高维数据中距离计算可能失效,需结合特征选择或降维(如PCA)。 - **样本均衡性**:类别不平衡时,需调整权重或采用加权投票策略。 ---
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值