Python实现回归算法的衡量指标计算:MSE/RMSE/MAE/R^2

本文介绍了如何使用Python从零开始计算MSE(均方误差)、RMSE(均方根误差)、MAE(平均绝对误差)和R^2(决定系数),并对比了sklearn库的计算结果,验证了自行实现的正确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在本文中,通过Python实现MSE/RMSE/MAE/R^2的计算,而非简单调用sklearn.metrics中的方法。

先简单介绍各衡量指标公式和意义:


1.MSE(均方误差):

2.RMSE(均方根误差):

3.MAE(平均绝对误差):

以上1-3衡量指标,根据不同业务,会有不同的值大小,不具有可读性,故引入R^2衡量指标。

4.R^2(决定系数):

 R越大表示我们的模型效果越好,最大值为1.

 R=1:我们的预测没有产生任何错误

 R=0:我们的模型等于基准模型,即我们的模型效果很差

 R<0:说明数据之间没有任何线性关系

下面通过python计算MSE/R值,并与sklearn的计算值比较,是否相等。

#计算MSE/R^2
def scoreReg():
    #testY是一维数组,predicY是二维数组,故需要将testY转换一下
    MSE=np.sum(np.power((testY.reshape(-1,1) - predicY),2))/len(testY)
    R2=1-MSE/np.var(testY)
    print("MSE:",MSE)
    print("R2:", R2)
    #sklearn求解的MSE值
    MSE2 = mean_squared_error(testY, predicY)
    print("MSE2:", MSE2)

if __name__ == '__main__':
    #波士顿房价预测数据,在这里我们取“RM”特征值x与房价预测结果y
    #boston.data[:,5] 表示 “RM”特征值列数据
    boston = datasets.load_boston()
    x=boston.data[:,5]
    y=boston.target
    #过滤掉异常值
    x=x[y<50]
    y=y[y<50]
    trainX, testX, trainY, testY = train_test_split(x, y)
    reg=LinearRegression()
    reg.fit(np.array(trainX).reshape(-1,1),np.array(trainY).reshape(-1,1))
    predicY=reg.predict(np.array(testX).reshape(-1,1))
    scoreReg()

打印结果为:

MSE: 43.15282762514129
R2: 0.5302411872573958
MSE2: 43.15282762514129



评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值