python学习:pandas库之DataFrame官方文档简介

本文详细介绍Pandas库的主要功能,包括其核心数据结构Series和DataFrame的使用方法。文章列举了DataFrame的各种操作,如生成、属性获取、数据类型转换、索引、二元运算、数据分组与聚合、缺失值处理等,并提供了丰富的示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Pandas库是基于Numpy库来创建的,Numpy主要用于矩阵操作,而Pandas主要用于数据处理。

Pandas主要有两种重要的数据结构:Series和DataFrame.

  • Series: 类似一个一维数组,一个Series对应DataFrame的一列
  • DataFrame:类似一个二维数组,一个DataFrame由几个Series列构成。

在我们学习任何一种开源框架,必须得学会阅读其官方文档:

http://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.html

根据官方文档,我们先看其最左边的目录:

我们通过对各子目录的简单介绍,来了解DataFrame如何运用:

英文目录中文目录该目录下常用属性/方法
Constructor构造方法可以由numpy数组/字典/DataFrame生成
Attributes and
 underlying data
属性值index:数据表的行索引
columns:数据表的列索引
shape:数据表的形状
dtypes:数据表值的数据类型
Conversion转换astype:转换数据类型
Indexing, iteration索引/迭代iloc/loc/iteritems/iterrows/isin
Binary operator functions二元运算符函数add/sub/mul/div:加减乘除,元素级计算
dot:点乘
df1.combine_first(df2):用df2的值填充df1的空值
Function application,
 GroupBy & Window
apply方法/分组/apply:在数据表中沿着行/列方向调用某方法
groupby:通过mapping/方法/标签/标签集进行分组,返回一个GroupBy对象。GroupBy对象可进行统计学各值计算或调用其apply/agg方法+D15。
agg/aggregate:聚合函数
Computations /
Descriptive Stats
计算/描述性统计describe:输出数据表各列统计值-中位值/方差等
/max/mean/var/corr
Reindexing /
 Selection/
 Label manipulation
重新索引/选择数据/通过标签操作reindex:重命名行/列
rename:可以通过字典的方法重命名行/列
/reset_index/
head:选择前N行数据,默认前5行
tail:选择最后N行数据,默认后5行
drop_duplicates:返回丢弃了重复值的dataframe
duplicated:根据是否是重复值返回布尔值Series
drop
Missing data handling缺失值处理dropna/fillna/replace
Reshaping/
 sorting,/
transposing
改变数组形状/
排序/转换
sort_values:按表中内容值大小排序,
sort_index:按行/列的值大小排序
T:矩阵转置
pivot_table:数据透视表
Combining /
 joining /
 merging
合并/连接append:在数据表末尾添加行数据
/join/
merge:类似SQL的连接,内连接/外连接
Time series-related时间序列 
Plotting绘制图形plot:通过kind参数绘制不同图形
Serialization /
 IO /
 Conversion
读取操作from_csv/to_csv
Sparse稀疏矩阵 
数据分箱技术Binning:pandas.cut()
数据分组技术GroupBy:GroupBy.get_group(groupname1)--> 得到其中一组类别的dataframe

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值