题意:根据栈操作的产生树的中序遍历,求后序遍历。
解法:
栈的压入过程就是先序遍历。将先序和中序结果保存起来求后序。
根据先序结果的值在中序上的位置,然后求出左右子树的中序遍历上的范围进行遍历,同时求出左右子节点在后序中的位置。
反思:
类似的题目做过好几次,还是会写起来有点繁琐,感觉是对这块理解还不够。看到有人是通过模拟后序遍历的过程做的,先遍历左右子树后将当前值写入,写得很简洁。这一题似乎没有明确说明值是唯一的,但是还是通过了。
(用时:1:02:18.30)
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstdlib>
#include<vector>
#include<map>
#include<stack>
//#include<bits/stdc++.h>
using namespace std;
vector<int> inOrder;
vector<int> preOrder;
vector<int> postOrder;
int preIndex = 0;
void getPostOrder(int inOrderLeft,int inOrderRight,int n,int index)
{
if(preIndex>=n||inOrderLeft>=inOrderRight) {
return;
}
int midIndex = inOrderLeft;
for(int i = inOrderLeft; i<inOrderRight; i++) {
if(inOrder[i]==preOrder[preIndex]) {
midIndex =i;
postOrder[index]=preOrder[preIndex];
break;
}
}
if(inOrderLeft<midIndex) {
++preIndex;
getPostOrder(inOrderLeft,midIndex,n,index -(inOrderRight - midIndex));
}
if(midIndex+1<inOrderRight) {
++preIndex;
getPostOrder(midIndex+1,inOrderRight,n,--index);
}
}
int main()
{
int n;
scanf("%d",&n);
stack<int> sta;
char order[5];
int m;
for(int i=0; i<2*n; i++) {
scanf("%s",order);
switch(order[1]) {
case 'u':
scanf("%d",&m);
sta.push(m);
preOrder.push_back(m);
break;
case 'o':
m = sta.top();
inOrder.push_back(m);
sta.pop();
break;
}
}
postOrder.resize(n);
getPostOrder(0,n,n,n-1);
for(int i=0; i<n; i++) {
if(i!=0) {
printf(" ");
}
printf("%d",postOrder[i]);
}
printf("\n");
return 0;
}