动态规划求解数字三角形问题

算法分析与设计实验 专栏收录该内容
8 篇文章 0 订阅

问题描述

设计一个算法,计算出从三角形的顶到底的一条路径,使该路径经过的数 字总和最大。例如,上述数字三角形的最优解 30 ,自顶向下的路径为 7-3-8-7-5。 注:每一个位置只能往下或者右下移动。
数据输入: 由文件 input.txt 提供输入数据。
文件的第 1 行是数字三角形的行数,该数 字在 1 到 100 之间。接下来 n 行是数字三角形各行中的数字。
所有数字在 0 至 99 之间。
结果输出: 程序运行结束时,将计算结果输出到文件 output.txt 中。
文件第 1 行中的数 是计算出的最大值。
输入文件实例
input.txt
5
7
3 8
8 1 0
2 7 4 4
4 5 2 6 5
如何得到最大的数字总和的同时,得到路径上的各个点,并把路径上的各个 点输出到一个文件中,文件的第一行为数字总和,第二行为路径上的各个数字, 例如,对上述输入,得到如下的结果:
output.txt
30
7 3 8 7 5

如何求解?

  • 需要求的是三角形中最大路径和,一提到最值问题,动态规划对于此类问题是比较拿手的,本题使用了动态规划去求解。
  • 确定dp数组含义; dp[i][j]定义为在三角形第i行第j列位置时最大的路径和。(至于为什么这么去定义,笔者并无较好建议,是通过大量做题的经验得来的)。
  • 确定遍历顺序;首先我想到了从三角形的上顶点往下遍历,但在后续填充dp数组时则需要注意边界处理(最左端以及最右端都需要进行条件判断并给予相应处理),整体将显得比较繁杂。因而换了一种思路:从三角形的底边开始网上遍历,这种方式实现起来更加简单(除去了边界判断。)。综上,最后的遍历顺序为行方向上为自下而上,列方向上从左至右;
  • 确定递推公式; 根据遍历顺序,dp数组的每一行都是下一行得到(除去最后一行),例如第3行的数据是通过第4行得到的。
    而每个位置只能通过正下方或者右下方到达。为了得到最大路径和:
    • dp[i][j] = max(dp[i + 1][j], dp[i + 1][j + 1]) + 当前位置的数值
  • 初始化dp数组; 递推公式中每一行都用到了下一行的结果,因此必须考虑到最后一行如何填充。这里有两种方式:
    ①创建dp数组时多出三角形一行,并且将最后一行初始化为0,这样遍历填充dp数组时可以保证不会越界以及结果的正确性。
    ②dp数组的最后一行的数值肯定与三角形是相同的。因此直接对dp底端赋值即可。

填充dp部分代码:

//只能选择正下方或者右下方作为直接后继行走
void searchPath() {
	//    inf数组: 存放数字三角形各行数据
	vector<vector<int>> dp = inf;//创建 row 行 row 列的二维数组

	for (int i = row - 2; i >= 0; i--) {//倒数第二行开始遍历
		for (int j = 0; j <= i; j++) {
			dp[i][j] = max(dp[i + 1][j], dp[i + 1][j + 1]) + inf[i][j];
		}
	}
	maxNum = dp[0][0];
	backTrace(dp);
}

文件读写

对于文件读写笔者并没很好的方法,这里稍微介绍一下:
因为从 .txt 文件读出来的为字符串存放到vector<vector> 容器中必须转为int型数据,查阅资料后发现 stringstream 类中有分割字符串并且可以将字符串转为int,读取文件代码如下:

//读取文件
void readFile(string readfile) {
	ifstream fin(readfile.c_str(), ios::in);
	stringstream ss;
	string temp;//保存文件信息 ---> 信息中转站
	getline(fin, temp);
	ss << temp;
	ss >> row;//读取第一行作为数字三角形的总行数
	int i = 0;
	while (getline(fin, temp)) {
		vector<int> vec;
		ss.clear();//每次读取之前清空以下 ss 原来的数据
		ss << temp;
		string s = "";
		while (ss >> s) {
			stringstream sS;
			sS << s;
			sS >> i;
			vec.push_back(i);
		}
		inf.push_back(vec);
	}
}

完整代码

#include <iostream>
#include <fstream>
#include <string>
#include <vector>
#include <algorithm>
#include <sstream>
using namespace std;
int maxNum = INT_MIN;//记录最大值
int row;//数字三角形行数量 由于是等腰三角形,行与列都相等 此处只记录行数
vector<vector<int>> inf;//保存 input.txt 文件信息 第二行开始
vector<int> Path;
void readFile(string readfile);//读文件
void searchPath();//搜寻路径
void writeFile(string writefile);//写文件
void backTrace(vector<vector<int>>& dp);//回溯寻找最优路径

//读取文件
void readFile(string readfile) {//读取文件
	ifstream fin(readfile.c_str(), ios::in);
	stringstream ss;
	string temp;//保存文件信息 ---> 信息中转站
	getline(fin, temp);
	ss << temp;
	ss >> row;//读取第一行作为数字三角形的总行数
	int i = 0;
	while (getline(fin, temp)) {
		vector<int> vec;
		ss.clear();//每次读取之前清空以下 ss 原来的数据
		ss << temp;
		string s = "";
		while (ss >> s) {
			stringstream sS;
			sS << s;
			sS >> i;
			vec.push_back(i);
		}
		inf.push_back(vec);
	}
}
//只能选择正下方或者右下方作为直接后继行走
void searchPath() {
	vector<vector<int>> dp = inf;//创建 row 行 row 列的二维数组

	for (int i = row - 2; i >= 0; i--) {//倒数第二行开始遍历
		for (int j = 0; j <= i; j++) {
			dp[i][j] = max(dp[i + 1][j], dp[i + 1][j + 1]) + inf[i][j];
		}
	}
	maxNum = dp[0][0];
	backTrace(dp);
}
//回溯寻找最优路径
void backTrace(vector<vector<int>>& dp) {
	int rowIndex = 0, colIndex = 0;
	while (rowIndex < row - 1) {//最多遍历到倒数第二行
		Path.push_back(inf[rowIndex][colIndex]);
		int tmp = dp[rowIndex][colIndex] - inf[rowIndex][colIndex];
		if (tmp == dp[rowIndex + 1][colIndex + 1])
			colIndex++;
		rowIndex++;
	}
	//最后一行单独处理
	Path.push_back(inf[rowIndex][colIndex]);
}
//写入文件
void writeFile(string writefile) {
	ofstream desFile(writefile);
	desFile << maxNum << "\n";//最终结果写入 output.txt
	for (int i = 0; i < row; i++) {
		desFile << Path[i] << " ";
	}
	desFile.close();
}

int main() {
	//读取文件路径
	string readfile = (char*)"D:\\专业课资料\\算法分析与设计\\input.txt";
	//写入文件路径
	string writefile = (char*)"D:\\专业课资料\\算法分析与设计\\output.txt";
	readFile(readfile);
	searchPath();
	writeFile(writefile);
	return 0;
}

运行效果

在这里插入图片描述

  • 4
    点赞
  • 0
    评论
  • 0
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

相关推荐
©️2020 CSDN 皮肤主题: 代码科技 设计师:Amelia_0503 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值