Semi-prime H-numbers poj3292 (类比欧拉筛)

Semi-prime H-numbers
Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 9171 Accepted: 4055

Description

This problem is based on an exercise of David Hilbert, who pedagogically suggested that one study the theory of 4n+1 numbers. Here, we do only a bit of that.

An H-number is a positive number which is one more than a multiple of four: 1, 5, 9, 13, 17, 21,... are the H-numbers. For this problem we pretend that these are the only numbers. The H-numbers are closed under multiplication.

As with regular integers, we partition the H-numbers into units, H-primes, and H-composites. 1 is the only unit. An H-number h is H-prime if it is not the unit, and is the product of two H-numbers in only one way: 1 × h. The rest of the numbers are H-composite.

For examples, the first few H-composites are: 5 × 5 = 25, 5 × 9 = 45, 5 × 13 = 65, 9 × 9 = 81, 5 × 17 = 85.

Your task is to count the number of H-semi-primes. An H-semi-prime is an H-number which is the product of exactly two H-primes. The two H-primes may be equal or different. In the example above, all five numbers are H-semi-primes. 125 = 5 × 5 × 5 is not an H-semi-prime, because it's the product of three H-primes.

Input

Each line of input contains an H-number ≤ 1,000,001. The last line of input contains 0 and this line should not be processed.

Output

For each inputted H-number h, print a line stating h and the number of H-semi-primes between 1 and h inclusive, separated by one space in the format shown in the sample.

Sample Input

21 
85
789
0

Sample Output

21 0
85 5
789 62


大体意思就是求0~n中H-semi-primes(后称h数)的个数  h数能被分解为两个4n+1数相乘的形式 而且这两个数不能再分解为两个4n+1相乘的形式  例如625 = 25*25 = 5*125 显然都不符合题目要求

思路就是筛选法  类比欧拉筛 但 比欧拉筛 但有点不同于欧拉筛

ACcode


#include <iostream>
#include <cstring>
#include <string>

using namespace std;

const int maxn = 1000100;

int num[maxn];
int H_prime[maxn];

void reset()
{
    int i,j,k;
    memset(num,0,sizeof(num));

    for(i=5; i<=maxn/5; i+=4)
    {
        for(j=5; i*j<=maxn; j+=4)
        {
            if(num[i]==0 && num[j]==0) ///只有 i j 都可以做因子的时候才可以进行筛选
            {
                num[i*j] = 1;   ///1代表i*j是一个h数
            }
            else
            {
                num[i*j] = -1;  ///如果出现这种情况 说明i j有至少一个不可以作为因子 比如25 125 但其i||j本身是一个h数 那么i*j就不可以作为因子也不是h数
            }
        }
    }
    int sum = 0;
    for(i=5; i<=maxn; i++)
    {
        if(num[i] == 1)
        {
            sum++;
        }
        H_prime[i] = sum; ///累加
    }
}

int main()
{
    int n;
    reset();
    while(cin>>n && n)
    {
        cout<<n<<" "<<H_prime[n]<<endl;
    }
    return 0;
}
 /// num[i*j] = -1  这一步很关键 例如 5*81 = 405 -> 1;81*5 = 405 -> -1;;;所以num[405]最后为-1 不是h数 81 = 9*9; 405 = 9*9*5;

类比欧拉筛

http://blog.csdn.net/gentle_guan/article/details/52054986


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值