L2-012. 关于堆的判断
时间限制
400 ms
内存限制
65536 kB
代码长度限制
8000 B
判题程序
Standard
作者
陈越
将一系列给定数字顺序插入一个初始为空的小顶堆H[]。随后判断一系列相关命题是否为真。命题分下列几种:
- “x is the root”:x是根结点;
- “x and y are siblings”:x和y是兄弟结点;
- “x is the parent of y”:x是y的父结点;
- “x is a child of y”:x是y的一个子结点。
输入格式:
每组测试第1行包含2个正整数N(<= 1000)和M(<= 20),分别是插入元素的个数、以及需要判断的命题数。下一行给出区间[-10000, 10000]内的N个要被插入一个初始为空的小顶堆的整数。之后M行,每行给出一个命题。题目保证命题中的结点键值都是存在的。
输出格式:
对输入的每个命题,如果其为真,则在一行中输出“T”,否则输出“F”。
输入样例:5 4 46 23 26 24 10 24 is the root 26 and 23 are siblings 46 is the parent of 23 23 is a child of 10输出样例:
F T F T
边输入边建堆
注意负号
可以利用一个pos数组来存数的位置
见代码
#include <bits/stdc++.h>
using namespace std;
const int minx = -100010; ///初始化最小值
int h[1100]; ///小顶堆
int pos[20010]; ///记录每个值的位置 原来数据+10000 因为范围是-10000~10000
int sz = 0;
void in(int x)
{
int i;
sz++;
for(i=sz; h[i/2]>=x && i > 1; i/=2) ///小顶堆
{
h[i] = h[i/2];
pos[h[i/2]+10000] = i; ///更新pos
}
h[i] = x;
pos[x+10000] = i; ///记录pos
}
char s[111];
int main()
{
int n,m,x;
int i,j,len;
int y,sum,t;
int flag = 0;
while(~scanf("%d%d",&n,&m))
{
sz = 0;
for(i=1; i<=n; i++) h[i] = minx; ///初始化堆
for(i=1; i<=n; i++)
{
scanf("%d",&x);
in(x); ///建立小顶堆
}
getchar();
for(i=1; i<=m; i++)
{
gets(s); ///以后死活不用std::ios::....cin.getline原型是gets?
len = strlen(s);
flag = 0; ///负数判定
if(s[len-1] == 't') ///判断是不是根 不同的数s长度会改变!
{
x = 0;
for(j=0; s[j]!=' '; j++)
{
if(s[j] == '-')
{
flag = 1;
continue;
}
x=x*10+s[j]-'0';
}
if(flag) x = -x;
flag = 0;
if(x==h[1]) printf("T\n"); ///判断根
else printf("F\n");
}
else if(s[len-1] == 's')
{
x = y = 0;
for(j=0; s[j]!=' '; j++)
{
if(s[j] == '-') ///判断负号 不要忘了!!!
{
flag = 1;
continue;
}
x=x*10+s[j]-'0';
}
if(flag) x = -x;
flag = 0;
j++;
while(s[j]!=' ')
{
j++;
}
for(j=j+1; s[j]!=' '; j++)
{
if(s[j] == '-')
{
flag = 1;
continue;
}
y=y*10+s[j]-'0';
}
if(flag) y = -y;
flag = 0;
int xid = pos[x+10000]; ///+10000找位置
int yid = pos[y+10000];
if(xid/2 == yid/2) ///兄弟 同父
{
printf("T\n");
}
else printf("F\n");
}
else
{
sum = 0;
for(j=0; s[j]; j++)
{
if(s[j] == ' ') sum++;
if(sum == 2) ///判断第二个空格后的字母 t/a
{
if(s[j+1] == 't')
{
x=y=t=0;
for(j=0; s[j]!=' '; j++)
{
if(s[j] == '-')
{
flag = 1;
continue;
}
x=x*10+s[j]-'0';
}
if(flag) x=-x;
flag = 0;
for(j=len-1; s[j]!=' '; j--)
{
if(s[j] == '-')
{
flag = 1;
continue;
}
y=y+(s[j]-'0')*pow(10,t);
t++;
}
if(flag) y=-y;
flag = 0;
int xid = pos[x+10000];
int yid = pos[y+10000];
if(xid == yid/2) ///父子
{
printf("T\n");
}
else printf("F\n");
}
else
{
x=y=t=0;
for(j=0; s[j]!=' '; j++)
{
if(s[j] == '-')
{
flag = 1;
continue;
}
x=x*10+s[j]-'0';
}
if(flag) x=-x;
flag = 0;
for(j=len-1; s[j]!=' '; j--) ///逆序模拟 用到了pow(10,t)
{
if(s[j] == '-')
{
flag = 1;
continue;
}
y=y+(s[j]-'0')*pow(10,t);
t++;
}
if(flag) y=-y;
flag = 0;
int xid = pos[x+10000];
int yid = pos[y+10000];
if(xid/2 == yid) ///子父
{
printf("T\n");
}
else printf("F\n");
}
break;
}
}
}
}
}
return 0;
}