Opencv+Python笔记(一)图像的I/O操作

1.读取图像

(1)Opencv API

img = cv2.imread(flie, flag)

输入值:
1.flie:要读取的图像文件路径
2.flag:读取方式(可省略)
读取方式的标志: 1.cv2.IMREAD_COLOR:(flags省略时的默认选项,也可用1代替),提供3通道的 BGR图像,每个通道一个8位值(0-255)。即输入彩色图像
2.cv2.IMREAD_GRAYSCALE:以灰度模式加载图像(可用0代替)
3.cv2.IMREAD_UNCHANGED:读取所有的图像数据,包括作为第四通道的α通道(或透明度通道),可用-1代替(如果有的话)

2.显示图像

(1)Opencv API

cv2.imshow(name, img)

参数: 1.name:显示图像的窗口名称 2.img:要加载的图像
注意: 在有其他GUI框架的支持下,仅用imshow()便可能显示出来,但在opencv中,只有调用waitKey时,才会绘制窗口,一般都放在一个函数中进行显示

def cv_show(name, img):
	cv2.imshow(name, img)
	cv2.waitKey(0)
	cv2.destroyAllWindows()

(2)使用matplotlib显示图像

plt.subplot(row, col, index)
plt.imshow(img), plt.title(title)
plt.xticks([]), plt.yticks([])

1.plt.subplot()函数用于直接制定划分方式和位置进行绘图。函数原型 subplot(row, col, index, **kwargs),一般我们只用到前三个参数,将整个绘图区域分成 row 行和 col 列,而 index 用于对子图进行编号。
2.plt.imshow()用于通过matplotlib库显示图像,注意该显示图像的形式是以RGB形式显示,而Opencv是以BGR形式显示的
3.plt.title()用于给该图像标题,plt.xticks([]),plt.ytciks([])用于给图像去x轴和y轴,放入函数中

def plt_show(n, row, column, titles, imgs):
    for i in range(n):
        plt.subplot(row, column, i + 1)
        plt.imshow(imgs[i])
        plt.title(titles[i])
        plt.xticks([]), plt.yticks([])
    plt.show()

3.存取图像

API

cv2.imwrite(file, img)

1.file:要保存的路径
2.img:要保存的文件

综合代码

import cv2
from matplotlib import pyplot as plt
import numpy as np

# 读取图像
img = cv2.imread('img.jpg')  # 后面可以加上cv2.IMREAD_COLOR/GRAYSCALE 彩色图像/灰度图像

# 显示图像
def cv_show(name, img):
    cv2.imshow(name, img)  #显示函数
    cv2.waitKey(0)  #键盘绑定函数 若参数为0则按任意键关闭窗口 若为n 则n毫秒后自动关闭窗口
    cv2.destroyAllWindows()

cv_show('img', img)

def plt_show(n, row, column, titles, imgs):
    for i in range(n):
        plt.subplot(row, column, i + 1)
        plt.imshow(imgs[i])
        plt.title(titles[i])
        plt.xticks([]), plt.yticks([])
    plt.show()
imgs = [img]
titles = ['img']
plt_show(1, 1, 1, titles, imgs)

# 保存图像
cv.imwrite("E:\\img.jpg", img)  #python中的文件路径要写成双斜杠


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
要在Python中使用OpenCV对彩色图像进行对比度增强,可以使用以下代码: import cv2 as cv import numpy as np # 读取图像 img = cv.imread("./image/fengjing.jpg") # 将图像转换为灰度图像 img_gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY) # 创建新图像,以便进行后续操作 img_enhanced = np.zeros(img_gray.shape, np.uint8) # 对比度增强 for i in range(img_gray.shape): for j in range(img_gray.shape): result = int(img_gray[i, j] * 1.6) if result > 255: result = 255 img_enhanced[i, j] = np.uint8(result) # 显示原始图像和增强后的图像 cv.imshow("Original Image", img) cv.imshow("Enhanced Image", img_enhanced) cv.waitKey(0) cv.destroyAllWindows() 这段代码使用了OpenCV库来读取彩色图像,并将其转换为灰度图像。然后,通过遍历每个像素,并将其乘以一个系数来增强对比度。最后,将增强后的图像显示出来。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* [Python 图像处理OpenCV:灰度图对比度操作笔记)](https://blog.csdn.net/m0_46820710/article/details/127654760)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *3* [【图像处理】彩色图像自适应对比度增强(OpenCV实现)](https://blog.csdn.net/u013921430/article/details/83865427)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值