MacOS 升级14.4.1后vscode无法远程连接 今天上班第一天,开始提示MacOS可以升级,顺手就点击了升级重启,版本显示 14.4.1 (23E224)此时大多数的VSCODE远程服务器无法连接,不管用不用VPN都不可以,报错大致包括如下信息。尝试清空knowhost和远程的vscode-server,都不起作用。就会报错,说无法连接,此时得改为英文且无空格的Host,这时就能连接了。这时如果你的名字是这样,Host 后面是中文或者有空格的。同时今天vscode升级到了1.88。此次MacOS的SSH升级了,此时。
关于MNN中图像预处理 MNN工程化中,首先遇到图像预处理,其中要做的是对图像归一化,这里不需要我们自己用代码实现,MNN自动帮我们处理,代码如下,根据。,处理公式是 dst = (img - mean) * normal。
cv2_polylines_Expected Ptr<cv::UMat> for argument ‘img 我原来以为是img变换出了问题,发现不画多边形,图像就能存储。发现,这个多边形不能在原图上画,只能在拷贝图像上画。今天画多边形,发现总是报下面这个错,
Android 中通过JNI调用OpenCV处理图片1 上篇提过,通过部署好了OpenCV的动态链接库,就是加入include和so文件,不用加入moudle;android studio使用jni调用opencv库实现图片转换【详细实例】(二)
Android Studio使用OpenCV以及JNI 1、下载OpenCVSDK,2、导入OpenCV Moudle,同时配置一下gradle,主要是版本要相同3、导入include头文件以及so文件,gradle中的jinLibs设置,要不说找到两个so文件 sourceSets { main { jniLibs.srcDirs = ['libs']} }#动态方式加载#include_directories(${CMAKE_SOURCE_DIR}/include)include_directories(/root/app/
MNN Ubuntu16部署流程 1、先安装protobuf2、下载MNN,注意,一定要下载1.2.1及以上的,要不编译会出问题编译参考 MNN编译方法生成处libMNN.so动态链接库,可以放在/usr/local/lib下,方便以后使用3、安装grpc第一步: 升级git第二步 :protobuf 安装下载protobuf1.enter the "protobuf/cmake/" dir.2.mkdir build. protobuf/cmake/build3.cmake ..4.make && m
pytorch中的__setattr__和__getattr__属性 最近看检测代码,经常会看到__setattr__和__getattr__这两个魔法属性,主要是对最后检测头的时候使用我查询了一下:__setattr__就等于在字典__dict__里面插入key和value但是,__getattr__是在获取不到key的时候才用到这个,但为什么pytorch可以获取import torch import torch.nn as nnclass Animal(nn.Module): def __init__(self,name,age) -> No
conda升级python 最近vscode在python3.7的环境下,numpy的有些函数没有提示,所以准备升级一下python内核,查了一下,输入conda install python=3.8他就自动升级了
Tmux 登录已经登录中的窗口 使用Tmux 的过程中,经常会遇到一种情况,就是想进去的tmux窗口,在别的电脑上登录过,然后没有退出,这时想登陆进去可以,但是size不一样,就感觉很难受,就像找那种把旧登录的挤下去那种命令,命令很简单,如下所示:tmux attach -d -t pannel1这样就能挤下去旧的登录,在这个窗口重新登录...
TensorRT cublasStatus == CUBLAS_STATUS_SUCCESS 最近部署TensorRT的时候,遇到了这个报错,导致生成的engine文件大小为0,就是空文件[TensorRT] INTERNAL ERROR: Assertion failed: cublasStatus == CUBLAS_STATUS_SUCCESS../rtSafe/cublas/cublasLtWrapper.cpp:279Aborting...[TensorRT] ERROR: ../rtSafe/cublas/cublasLtWrapper.cpp (279) - Assertion
Pytorch 加速读取数据之 prefetch_factor 最近使用四卡训练图片,发现总有卡的效率突变到0,大致就是在读取以及处理数据了怎么能加速读取呢?一个方法是用NVIDIA的DALI模块,可以加速,具体可以参考 英伟达DALI加速技巧:让数据预处理速度比原生PyTorch快4倍主要就是通过并行训练和预处理过程,减少了延迟及训练时间但是今天我发现一个更简单的方法就是升级pytorch到1.7以上,目前是1.8.1,最好的1.8.1吧为什么会这么说呢,因为在dataloader中加入了一个参数 prefetch_factor,这个就是提前加载多少个ba
Matplotlib中文显示 最近想用matplotlib显示中文,搜了一大堆,发现还没搞懂,最后参考知乎上 彻底解决Python里matplotlib不显示中文的问题的解决方式,终于解决了。第一步先看自己有没有中文字体包,就是那个ttf# 查询当前系统所有字体from matplotlib.font_manager import FontManagerimport subprocessmpl_fonts = set(f.name for f in FontManager().ttflist)print('all fo
Numpy 1e-0.1 小数显示问题修改 最近查看tensor输出的时候,只想看到小数后四位,但是由于tensor输出的是float64位的科学技术法,看起来很难受,如下图所示:1.去掉e显示由于上图很难看出来区别,所以需要转换一下输出方式,去掉e这种表示,在最上面设置一下np.set_printoptions(suppress=True)2.设置四位小数显示由于小数太多不美观,可以设置只显示4位,代码如下:np.set_printoptions(precision=4)效果为:这样就会美观好多,大家以后可以常用这两项设置
MAC VsCode 跳板机 远程连接服务器 最近一直使用VSCODE远程连接服务器进行开始,毕竟服务器比较多,VSCODE的远程服务开始又很方便,而且加入秘钥以后就等于秒开。但是最近我需要远程登录一台跳板机转的服务器,找了很多技术文档,这里总结一下。首先参考了这个201117-MacOS上通过VsCode配置跳板机连接服务器,刚开始没看懂,后面配置大致就了解了# Jump box with public IP addressHost <HUST> #跳板机服务器A名称<HUST> HostName <x
旋转图片及标注lable的实现 旋转图片相关内容背景旋转理论OpenCV操作背景1、做带角度的图像数据增强,一般使用rotate函数就可以,不过有时图片部分角就会旋转出去,如果不丢失信息,且补边呢?2、如果标注的label是一个矩形,如果旋转后,想让label也跟着旋转,怎么计算旋转理论旋转图片一般用到了仿射变换,仿射变换的原理可以从几何理解,也可以从极坐标方式理解,具体计算方式就是矩阵相乘OpenCV操作OpenCV的方法是cv2.getRotationMatrix2D()方法matRotate2 = cv2.getR
DCNv2 RuntimeError: Error compiling objects for extension 最近使用CenterNet的时候,由于在DLA34中用到了DCN,所以需要编译DCNv2,但是每次都会出问题,最近做一个小结1、Pytorch版本:1.62、DCN选择:https://github.com/lbin/DCNv2,这个链接中针对pytorch不同版本做了相应改变,切换分支即可git checkout -b pytorch_1.6 origin/pytorch_1.6但是编译的时候遇到了报错:.../bin/sh: 1: :/usr/local/cuda-10.0/bin/n
Pymysql中插入json内容 dict‘ object has no attribute ‘translate‘ 最近在使用pymysql插入数据时,会出现以下报错You have an error in your SQL syntax; check the manual that corresponds to your MySQL server version for the right syntax to use near \'det": 和 dict' object has no attribute 'translate'最后发现是单双引号造成的问题,所以我们应该使用以下方法:aa = pymysql
Pytorch训练总结 Pytorch中有许多需要注意的地方,这里总结一下1、数据加载1、要保证输出图片的格式是一致的train_data=CustomDataset(file_list,transform=transforms.Compose([ transforms.Resize(512),# 要保证数据输入大小一致 transform
使用OpenCV和PIL旋转90,180,270效率对比 最近需要一个批量旋转图像的程序,现在发现的有3种方法,所以就想看看哪个效率高点,所以进行了以下测试。1、OpenCV使用仿射变换这个参考了 OpenCV Python – Rotate Image 90, 180, 270 – Exampleimport cv2import time# read image as grey scaleimg = cv2.imread('0916_174.jpg')# get image height, width(h, w) = img.shape[:2