题目描述
某国为了防御敌国的导弹袭击,发展出一种导弹拦截系统。但是这种导弹拦截系统有一个缺陷:虽然它的第一发炮弹能够到达任意的高度,但是以后每一发炮弹都不能高于前一发的高度。某天,雷达捕捉到敌国的导弹来袭。由于该系统还在试用阶段,所以只有一套系统,因此有可能不能拦截所有的导弹。
输入导弹依次飞来的高度(雷达给出的高度数据是不大于50000的正整数),计算这套系统最多能拦截多少导弹,如果要拦截所有导弹最少要配备多少套这种导弹拦截系统。
输入输出格式
输入格式:
一行,若干个整数(个数少于100000)
输出格式:
2行,每行一个整数,第一个数字表示这套系统最多能拦截多少导弹,第二个数字表示如果要拦截所有导弹最少要配备多少套这种导弹拦截系统。
输入输出样例
输入样例#1: 复制
389 207 155 300 299 170 158 65
输出样例#1: 复制
6
2
说明
为了让大家更好地测试n方算法,本题开启spj,n方100分,nlogn200分
每点两问,按问给分
首先写了O(n^2)的朴素最长不上升子序列,1/4的分,然后分析第二问,就是一个朴素的模拟,维护一个数组t,t中一个元素代表这套系统拦截的最低高度,每次添加一个元素,找到刚好(也就是大于这个高度且最小的那个)更新即可。
然后就是O(nlogn)的LIS问题。
考虑一个栈S,遇到比栈顶小于等于的就直接入栈,比栈顶大的就在栈内二分查找,再更新即可。
#include<iostream>
#include<cstdio>
using namespace std;
const int MAXN=200000;
const int INF=0x3ffffff;
int S[MAXN],size;
int a[MAXN],f[MAXN],t[MAXN],tcnt;
int ans;
int n;
int main() {
n=0;
size=1;
S[1]=-INF;
while(cin>>a[++n]){
int now=n;
if(a[now]<=S[size]){
S[++size]=a[now];
}else{
int l=0,r=now+1;
while(l<=r){
int mid=(l+r)>>1;
if(S[mid]>=a[now]) l=mid+1;//!!!
else r=mid-1;
}
S[l]=a[now];
}
}
tcnt=1;
int mn,mnid;
bool succ;
for(int i=1;i<=n;i++) t[i]=INF;
for(int i=1; i<=n; i++) {
mn=INF+1;
succ=0;
for(int j=1; j<=tcnt; j++) {
if(mn>=t[j]&&a[i]<=t[j]) {
mn=t[j]=a[i];
mnid=j;
succ=1;
}
}
if(!succ) t[++tcnt]=a[i];
}
cout<<size+1<<endl<<tcnt<<endl;
return 0;
}
树状数组优化 nlogn的LIS
//Stay foolish,stay hungry,stay young,stay simple
#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
const int MAXN=200000;
int t[MAXN];
int a[MAXN];
int b[MAXN];
int f[MAXN];
int n;
inline void updata(int now,int w){
while(now<=n){
t[now]=max(t[now],w);
now+=now&-now;
}
}
inline int query(int now){
int ret=-(1<<30);
while(now){
ret=max(ret,t[now]);
now-=now&-now;
}
return ret;
}
int ans=1;
int main(){
cin>>n;
for(int i=1;i<=n;i++) cin>>a[i],b[i]=a[i];
sort(b+1,b+1+n);
int tot=unique(b+1,b+1+n)-b-1;
for(int i=1;i<=n;i++) a[i]=lower_bound(b+1,b+1+tot,a[i])-b+1;
for(int i=1;i<=n;i++){
f[i]=query(a[i]-1)+1;
updata(a[i],f[i]);
ans=max(ans,f[i]);
}
cout<<ans<<endl;
}