题目描述
在一个n*m的只包含0和1的矩阵里找出一个不包含0的最大正方形,输出边长。
输入输出格式
输入格式:
输入文件第一行为两个整数n,m(1<=n,m<=100),接下来n行,每行m个数字,用空格隔开,0或1.
输出格式:
一个整数,最大正方形的边长
输入输出样例
输入样例#1:
4 4
0 1 1 1
1 1 1 0
0 1 1 0
1 1 0 1
输出样例#1:
2
首先想到O(n^3)的做法 f[i][j][k] 以(i,j)为左上角边长为k符合的正方形
可以由内部四个k-1边长的正方形转移
年前考试就用了O(n^3)的,T了几个点
#include<iostream>
using namespace std;
bool f[105][105][105];
int n,m;
int ans=1;
int main() {
cin>>n>>m;
for(int i=1; i<=n; i++) {
for(int j=1; j<=m; j++) {
cin>>f[i][j][1];
}
}
for(int k=2; k<=max(n,m); k++) {
for(int x=1; x<=n; x++) {
for(int y=1; y<=m; y++) {
f[x][y][k]=
f[x][y][k-1]&
f[x+1][y][k-1]&
f[x][y+1][k-1]&
f[x+1][y+1][k-1];
// cout<<x<<" "<<y<<" "<<k<<" "<<f[x][y][k]<<endl;
if(f[x][y][k]) ans=max(ans,k);
}
}
}
cout<<ans<<endl;
return 0;
}
然后有O(n^2)的做法
f[i][j] 以(i,j)为右下角点的最大符合的正方形边长
可以由左、上、左上最小值转移来
//Stay foolish,stay hungry,stay young,stay simple
#include<iostream>
using namespace std;
const int MAXN=105;
bool a[MAXN][MAXN];
int f[MAXN][MAXN];
int n,m;
int main(){
cin>>n>>m;
for(int i=1;i<=n;i++){
for(int j=1;j<=m;j++){
cin>>a[i][j];
}
}
int ans=-233;
for(int i=1;i<=n;i++){
for(int j=1;j<=m;j++){
if(a[i][j]==0) continue;
f[i][j]=min(f[i-1][j],min(f[i][j-1],f[i-1][j-1]))+1;
ans=max(ans,f[i][j]);
}
}
cout<<ans<<endl;
return 0;
}