Time Limit: 10 Sec Memory Limit: 162 MB
Submit: 2544 Solved: 1466
[Submit][Status][Discuss]
Description
windy有 N 条木板需要被粉刷。 每条木板被分为 M 个格子。 每个格子要被刷成红色或蓝色。 windy每次粉刷,只能选择一条木板上一段连续的格子,然后涂上一种颜色。 每个格子最多只能被粉刷一次。 如果windy只能粉刷 T 次,他最多能正确粉刷多少格子? 一个格子如果未被粉刷或者被粉刷错颜色,就算错误粉刷。
Input
输入文件paint.in第一行包含三个整数,N M T。 接下来有N行,每行一个长度为M的字符串,'0'表示红色,'1'表示蓝色。
Output
输出文件paint.out包含一个整数,最多能正确粉刷的格子数。
Sample Input
3 6 3
111111
000000
001100
Sample Output
16
HINT
30%的数据,满足 1 <= N,M <= 10 ; 0 <= T <= 100 。 100%的数据,满足 1 <= N,M <= 50 ; 0 <= T <= 2500 。
倒着求LIS,怎么求呢?把树状数组下标”取反”,更新倒着更新,a[i]-1改成a[i]+1。
贪心统计答案,注意是下标最小。
血的教训 离散化没有-1
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
inline int rd(){
int ret=0,f=1;char c;
while(c=getchar(),!isdigit(c))f=c=='-'?-1:1;
while(isdigit(c))ret=ret*10+c-'0',c=getchar();
return ret*f;
}
const int MAXN=1000005;
int n,m,tot;
int a[MAXN],b[MAXN],f[MAXN];
int val[MAXN];
int t[MAXN];
void updata(int x,int w){
for(int i=tot+1-x;i<=n;i+=i&-i) t[i]=max(t[i],w);
}
int query(int x){
int ret=-1;
for(int i=tot+1-x;i;i-=i&-i) ret=ret>t[i]?ret:t[i];
return ret;
}
int mx;
int sv[MAXN];
int main(){
// freopen("1.in","r",stdin);
// freopen("my.out","w",stdout);
n=rd();
for(int i=1;i<=n;i++) sv[i]=b[i]=a[i]=rd();
sort(b+1,b+1+n);
tot=unique(b+1,b+1+n)-b-1;
for(int i=1;i<=n;i++){
//int sav=a[i];
a[i]=lower_bound(b+1,b+1+tot,a[i])-b-1;//
//val[a[i]]=sav;
}
for(int i=n;i>=1;i--){
f[i]=query(a[i]+1)+1;
updata(a[i],f[i]);
//que[f[i]]=min(que[f[i]],val[a[i]]);
mx=mx<f[i]?f[i]:mx;
}
m=rd();
int x;
for(int i=1;i<=m;i++){
x=rd();
if(x>mx) {puts("Impossible");continue;}
int tmp=0;
for(int j=1;j<=n;j++){
if(f[j]>=x&&sv[j]>tmp) {//=
tmp=sv[j];x--;
cout<<tmp<<" ";
if(x==0) {printf("\n");break;}
}
}
}
return 0;
}