Pandas merge交集、并集使用与区别

本文详细介绍了Pandas库中merge函数的不同连接方式,包括inner、left、right和outer,以及它们在实际数据处理中的应用。通过实例演示了如何根据业务需求选择合适的合并策略,理解其与数据库连接方式的对应关系。
摘要由CSDN通过智能技术生成

先看下图,快速理解含义。

注意!

以上的结果 是两边都没有重复ID的合并结果,如果有重复,记录会翻倍增加

python pandas 实现

t1 = pd.merge(t3,t4,on=['key','key2'],how='inner')
t1 = pd.merge(t3,t4,on=['key','key2'],how='left') 
t1 = pd.merge(t3,t4,on=['key','key2'],how='right') 
t1 = pd.merge(t3,t4,on=['key','key2'],how='outer')

inner:在on的列上两方均有的数据,即交集

left:左侧作为被匹配对象,右侧的数据匹配左侧的数据,没有的则为空。未匹配到,则为空

right:右侧作为被匹配对象,左侧的数据匹配右侧的数据,没有的则为空。未匹配到,则为空

outer:并集,所有的元素都有

(其中的on为对应在那几列上进行的操作)
 

总结:merge的处理方式类似与数据库表的连接方式。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值