自定义博客皮肤

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

机器学习之特征工程(一)

两个写的不错的文章: https://blog.csdn.net/jasonding1354/article/details/47171115 https://www.cnblogs.com/wxquare/p/5484636.html

2019-05-06 14:42:02

阅读数 12

评论数 0

API(1): API中的数据类型, JSON  与 XML

API的大部分数据都是JSON或XML格式 JSON ——JavaScriptobjectnotation ,JavaScript对象标记; xml代表可延伸标记语言。 上面的数据很不自然,JSON对于展现和读取具有复杂结构的数据特别有用。 JSON构建在两个关键结构上: 1.JSO...

2019-04-25 22:27:57

阅读数 34

评论数 0

Python:删除字符串中的 \ xa0

\xa0 is actually non-breaking space in Latin1 (ISO 8859-1), also chr(160). You should replace it with a space. string = string.replace(u'\xa0', u' '...

2019-04-24 22:41:49

阅读数 38

评论数 0

前端开发(二):HTML的书写模板、了解HTML文档

模板可分解为 3 个部分: DOCTYPE:描述 HTML 的类型。尽管技术上存在不同的类型,但对于你将要编写的 99.999% 的 HTML 来说,<!DOCTYPE html>是不错的选择。 <head>:描述有关站点的元信息(例如标...

2019-04-24 21:58:00

阅读数 106

评论数 0

前端开发(一):文本编辑器

Sublime Text 3 Sublime Text 3 Logo Windows、Mac、Linux 成本:80 美元(但是可以在接受弹出窗口的条件下免费无限次使用) 样式:GUI Sublime Text 官方网站 Sublime Text 快速、轻量而且易于定制。拥有众多快...

2019-04-24 20:31:37

阅读数 103

评论数 0

pandas: 通过Pandas Merges进行Dataframe的合并(四种类型的合并)

合并类型 目前为止,我们学习了如何附加数据帧 (Dataframe)。现在,我们将学习Pandas Merges,这是合并数据帧 dataframe 的另一种方式。这类似于数据库风格的 "join"。如果你熟悉 SQL,这个与 SQL 的比较可以帮助你将它们联系起来。 这里...

2019-04-23 11:35:45

阅读数 60

评论数 0

jupyter notebook(一): jupyter notebook的快捷键

Jupyter NoteBook 的快捷键使用指南 命令模式快捷键(按 Esc 键开启): 快捷键 作用 说明 Enter 转入编辑模式 Shift-Enter 运行本单元,选中下个单元 新单元默认为命令模式 Ctrl-Enter ...

2019-04-22 10:04:04

阅读数 21

评论数 0

Python绘图 的颜色,线型,点型

颜色(color 简写为 c): 蓝色: 'b' (blue) 绿色: 'g' (green) 红色: 'r' (red) 蓝绿色(墨绿色): 'c' (cyan) 红紫色(洋红): 'm' (magenta) 黄色: 'y' (yellow) 黑色: 'k' (black) 白色: 'w' (w...

2019-04-09 15:27:25

阅读数 150

评论数 0

pandas: 在dataframe中取出一列的时候,不同的操作生成结果不同——series or dataframe

已有一个dataframe名字为 RoadRank_df, print(RoadRank_df) out:  使用命令 : RoadRank1_df = RoadRank_df[['rank1']].dropna() 结果为: dataframe 打印输出            ...

2019-01-24 12:17:53

阅读数 126

评论数 0

pandas: DataFrame排序问题

一、定义数据框DataFrame import  pandas frame = pandas.DataFrame({"a":[9,2,5,1],"b":[4,7,-3,2],"c":[6...

2019-01-23 21:18:38

阅读数 155

评论数 0

python: python求各种距离公式

一.  scipy.spatial 模块的介绍 在scipy.spatial中最重要的模块应该就是距离计算模块distance了。 from scipy import spatial 距离计算 矩阵距离计算函数 矩阵参数每行代表一个观测值,计算结果就是每行之间的metric距离。Distan...

2019-01-23 20:12:10

阅读数 278

评论数 0

Python:在Python中 输出不重复的随机数

关键在于使用集合set import  random h =set() while(len(h)<10):     h.add(random.randint(10,100))   print(h)  

2019-01-23 19:36:59

阅读数 390

评论数 0

Python: 统计元素的个数

1. list.count(value)可返回value在list中的个数 2.DataFrame.count()返回每行或每列的值的个数,除去空值(默认是行)     DataFrame.count(axis =0)  或  DataFrame.count(axis =1)  ...

2019-01-21 20:50:23

阅读数 1322

评论数 0

python中根据元素获得索引

1. 获取DataFrame的值的索引 (1)可以用DataFrame的条件索引,即令df_sub=df[conditions],然后再获取df_sub的index属性即可 如:random_fcd[random_fcd['time1']=='2.77'].index (2)对于某一个列(s...

2019-01-21 15:10:40

阅读数 443

评论数 0

python:找出列表list中的重复元素

问题: 一个列表中可能含有重复元素,使用set()可以实现列表的去重处理,但是无法知道哪些元素是重复的,下面的函数用于找出哪些元素重复了,以及重复的次数。 【问题解决】 from collections import Counter   #引入Counter a = [29,36,57,1...

2019-01-21 10:15:38

阅读数 986

评论数 0

pandas:dataframe更改数据类型

pandas的dataframe数据类型转换   在使用pandas库进行数据分析时,有时候会需要将object类型转换成数值类型(float,int),那么如何做呢? 主要有以下三种方法:创建时指定类型,df.astype强制类型转换,以及使用pd.to_numeric() 转换成适当数值...

2019-01-20 22:01:50

阅读数 561

评论数 0

pandas: 获取Dataframe的行数和列数

返回列数: df.shape[1] 返回行数: df.shape[0] 或者:len(df)  

2019-01-20 20:56:22

阅读数 5306

评论数 0

pandas: DataFrame 删除重复的行

  1. 建立一个DataFrame  C=pd.DataFrame({'a':['dog']*3+['fish']*3+['dog'],'b':[10,10,12,12,14,14,10]})   2. 判断是否有重复项 用duplicated( )函数判断    C.duplica...

2019-01-15 20:34:56

阅读数 1180

评论数 0

pandas: dataframe的拼接与合并

python 把几个DataFrame合并成一个DataFrame——merge,append,join,concat pandas provides various facilities for easily combining together Series, DataFrame, and ...

2019-01-15 20:26:59

阅读数 209

评论数 0

Python异常处理 -跳过异常继续执行

当循环中出现异常时,如何跳过循环中的异常继续执行,下面是一种可行的方法: import pandas as pd dates=range(20161010,20161114) pieces=[] for date in dates:     try:         data=pd.read_c...

2019-01-15 17:47:17

阅读数 455

评论数 0

提示
确定要删除当前文章?
取消 删除