pd.merge 根据一个或多个键将两个DataFrame
进行行
(左右)拼接,类似于SQL的关系型数据库。
一、参数详解
二、how 连接方式可选参数
还可选 cross 交叉连接,返回两个的笛卡尔积,即每个 DataFrame 的每一行都与另一个 DataFrame 的每一行配对。(使用并不多)
三、示例代码
1. 一对一 merge。
1.1 初始化 df1 和 df2 数据。
1.2 merge 结果
-
请注意,如果不指定在哪一列上进行连接,merge 会自动将
列名相同
的作为连接的键,最好指定连接键on = 'key'
。 -
连接方式 how 默认是
inner
。其结果是取的两张表的交集。所以df1中的c列
和df2中的 d列
都被丢弃了。
inner:
取交集,只连接两张表都存在的内容。(数据量可能变少)
left:
以左表键为主,若右表不存在相应数据,则补 NaN;若右表有左表不存在的数据,则舍弃右表该部分。
right:
以右表键为主,若左表不存在相应数据,则补 NaN;若左表有右表不存在的数据,则舍弃左表该部分。
outer:
取并集,将两个表所有的键取并集后,再进行连接。(数据量一定变大)
pd.merge(df1,df2,on='key',how='inner')
1.3 代码
import pandas as pd
import numpy as np
df1 = pd.DataFrame({
'key':['a','b','c'],
'data1':range(3)
})
df2 = pd.DataFrame({
'key':['a','b','d'],
'data2':range(3)
})
# pd.merge(df1,df2)
pd.merge(df1,df2,on='key')
连接键在 df1 和 df2 的列名可以是不同的
,此时不在用 on 指定键,而是用 left_on 和 right_on
。eg:df1 键为 lkey,df2 键为 rkey,则代码如下:
pd.merge(df1,df2,left_on='lkey',right_on='rkey')
2. 一对多 merge 。
2.1 初始化df1 df2
2.2 merge 结果
一对多 和 多对多 连接是行的笛卡尔积
。由于 df1 有两个 ‘a’ 行,而 df2 有一个’a’ 行,所以结果就应该是 2*1 = 2
,总计 2 个 ‘a’ 行。
2.3 代码
import pandas as pd
import numpy as np
df1 = pd.DataFrame({
'key':['a','a','b'],
'data1':range(3)
})
df2 = pd.DataFrame({
'key':['a','b','d'],
'data2':range(3)
})
pd.merge(df1,df2,on='key',how='outer')
3. 多对多 merge 。
3.1 初始化df1 df2
3.2 merge 结果
- 一对多 和 多对多 连接是行的
笛卡尔积
。由于 df1 有 2 个 ‘a’ 行,而 df2 有 2 个’a’ 行,所以结果就应该是2*2 = 2
,总计 4 个 ‘a’ 行。 - 注意此次我们初始化的 df1 和df2 有重叠的列名 data。默认生成 data_x data_y 等。
- 我们可以通过
suffixes
在重叠的列名后指定需要添加的字符串。
3.3 代码
import pandas as pd
import numpy as np
df1 = pd.DataFrame({
'key':['a','a','b'],
'data':range(3)
})
df2 = pd.DataFrame({
'key':['a','a','d'],
'data':range(3)
})
pd.merge(df1,df2,on='key',how='outer',suffixes=('_1','_2'))
4. 根据索引合并。
4.1 初始化df1 df2
4.2 merge 结果
- 如果 df 中用于合并的键是他的索引,此时可以使用
left_index 或 right_index
来表示索引用来作为合并的键。 - 两边都是索引也是可以的。
4.3 代码
import pandas as pd
import numpy as np
df1 = pd.DataFrame({
'key':['a','b','c'],
'data1':range(3)
})
df2 = pd.DataFrame({
'data2':[2,5,8]
},
index=['a','b','c']
)
pd.merge(df1,df2,left_on='key', right_index=True, how='outer')
5. 根据多建合并。
5.1 初始化df1 df2
5.2 merge 结果
在on
参数中传递多个键。
5.3 代码
import pandas as pd
import numpy as np
df1 = pd.DataFrame({
'年级':['初一','初一','初二','初三','初三'],
'班级':['1班','2班','1班','1班','2班'],
'学生人数':[34,54,23,44,57]
})
df2 = pd.DataFrame({
'年级':['初一','初二','初二','初三','初三'],
'班级':['2班','1班','2班','1班','2班'],
'教师人数':[6,4,5,4,7]
})
pd.merge(df1,df2,on=['年级','班级'], how='outer')