局部线性嵌入(Locally Linear Embedding, LLE)

主要思想

LLE将 D D D维特征 X = [ x 1 , x 2 , ⋯   , x N ] ∈ R D × N \mathbf{X}=[\mathbf{x}_1, \mathbf{x}_2, \cdots, \mathbf{x}_N]\in\mathbb{R}^{D\times N} X=[x1,x2,,xN]RD×N x i ∈ R D \mathbf{x}_i\in\mathbb{R}^{D} xiRD)映射到 d ( d ≪ D ) d(d\ll D) d(dD)维空间中( Y = [ y 1 , y 2 , ⋯   , y N ] ∈ R d × N \mathbf{Y}=[\mathbf{y}_1, \mathbf{y}_2, \cdots, \mathbf{y}_N]\in\mathbb{R}^{d\times N} Y=[y1,y2,,yN]Rd×N),在原始空间 X \mathbf{X} X中的点有着局部线性保持的特性,即
x i = ∑ j ∈ N ( i ) w j x j \mathbf{x}_i=\sum_{j\in\mathcal{N}(i)}{w_{j}\mathbf{x}_j} xi=jN(i)wjxj
其中 N ( i ) \mathcal{N}(i) N(i)表示在原始空间 X \mathbf{X} X x i \mathbf{x}_i xi的附近的点,相应的权重为 w j w_j wj,LLE希望在降维后的空间 Y \mathbf{Y} Y中对应的点也有这样的保持关系
y i = ∑ j ∈ N ( i ) w j y j \mathbf{y}_i=\sum_{j\in\mathcal{N}(i)}{w_{j}\mathbf{y}_j} yi=jN(i)wjyj
所以整个求解思路为:
(1)先求解 w w w
(2)求解降维后的 Y \mathbf{Y} Y

推导方法

假设已经在原始空间 X \mathbf{X} X中构造好了邻近关系 N ( ⋅ ) \mathcal{N}(\cdot) N(),那么求解 W = [ w 1 , ⋯   , w N ] ∈ R N × N \mathbf{W}=[\mathbf{w}_1,\cdots,\mathbf{w}_N]\in\mathbb{R}^{N\times N} W=[w1,,wN]RN×N w i , j = 0 , i f j ∉ N ( i ) \mathbf{w}_{i,j}=0, if j\notin\mathcal{N}(i) wi,j=0,ifj/N(i))的优化目标为
arg min ⁡ W   ∑ i = 1 N ∥ x i − ∑ j ∈ N ( i ) w i , j x j ∥ 2 \argmin\limits_{\mathbf{W}}\ \sum_{i=1}^N\left\|\mathbf{x}_i-\sum_{j\in\mathcal{N}(i)}\mathbf{w}_{i,j}\mathbf{x}_j\right\|^2 Wargmin i=1N xijN(i)wi,jxj 2
一般来说,希望权重和为1,则对 ∀ i \forall i i ∑ j ∈ N ( i ) w i , j = 1 \sum_{j\in\mathcal{N}(i)}\mathbf{w}_{i,j}=1 jN(i)wi,j=1,则上述优化问题可进一步简化
arg min ⁡ W   ∑ i = 1 N ∥ ∑ j ∈ N ( i ) w i , j x i − ∑ j ∈ N ( i ) w i , j x j ∥ 2 arg min ⁡ W   ∑ i = 1 N ∥ ∑ j ∈ N ( i ) w i , j ( x i − x j ) ∥ 2 arg min ⁡ w ~ 1 , w ~ 2 , ⋯   , w ~ N   ∑ i = 1 N w ~ i T X ~ i T X ~ i w ~ i   ( X ~ i = [ x i − x j ∣ j ∈ N ( i ) ] ∈ R D × ∣ N ( i ) ∣ ,   w ~ i ∈ R ∣ N ( i ) ∣ × 1 ) \begin{aligned} \argmin\limits_{\mathbf{W}}\ &\sum_{i=1}^N\left\|\sum_{j\in\mathcal{N}(i)}\mathbf{w}_{i,j}\mathbf{x}_i-\sum_{j\in\mathcal{N}(i)}\mathbf{w}_{i,j}\mathbf{x}_j\right\|^2\\ \argmin\limits_{\mathbf{W}}\ &\sum_{i=1}^N\left\|\sum_{j\in\mathcal{N}(i)}\mathbf{w}_{i,j}\left(\mathbf{x}_i-\mathbf{x}_j\right)\right\|^2\\ \argmin\limits_{\widetilde{\mathbf{w}}_1,\widetilde{\mathbf{w}}_2,\cdots,\widetilde{\mathbf{w}}_N}\ &\sum_{i=1}^N{\widetilde{\mathbf{w}}_i^T\widetilde{\mathbf{X}}_i^T\widetilde{\mathbf{X}}_i\widetilde{\mathbf{w}}_i}\ {\color{blue} (\widetilde{\mathbf{X}}_i=\left[\mathbf{x}_i-\mathbf{x}_j|j\in\mathcal{N}(i)\right]\in\mathbb{R}^{D\times|\mathcal{N}(i)|},\ \widetilde{\mathbf{w}}_i\in\mathbb{R}^{|\mathcal{N}(i)|\times 1})}\\ \end{aligned} Wargmin Wargmin w 1,w 2,,w Nargmin i=1N jN(i)wi,jxijN(i)wi,jxj 2i=1N jN(i)wi,j(xixj) 2i=1Nw iTX iTX iw i (X i=[xixjjN(i)]RD×N(i), w iRN(i)×1)
正如前所述,还有约束条件 ∀ i ∈ { 1 , 2 , ⋯   , N } \forall i\in\{1,2,\cdots,N\} i{1,2,,N} w ~ i T 1 ∣ N ( i ) ∣ × 1 = 1 \widetilde{\mathbf{w}}_i^T1_{|\mathcal{N}(i)|\times 1}=1 w iT1N(i)×1=1,所以最终优化问题为:
arg min ⁡ w ~ 1 , w ~ 2 , ⋯   , w ~ N   ∑ i = 1 N w ~ i T X ~ i T X ~ i w ~ i s . t .   w ~ i T 1 ∣ N ( i ) ∣ × 1 = 1 ,   i ∈ { 1 , 2 , ⋯   , N } \begin{aligned} \argmin\limits_{\widetilde{\mathbf{w}}_1,\widetilde{\mathbf{w}}_2,\cdots,\widetilde{\mathbf{w}}_N}\ &\sum_{i=1}^N{\widetilde{\mathbf{w}}_i^T\widetilde{\mathbf{X}}_i^T\widetilde{\mathbf{X}}_i\widetilde{\mathbf{w}}_i}\\ s.t.\ &\widetilde{\mathbf{w}}_i^T1_{|\mathcal{N}(i)|\times 1}=1,\ i\in\{1,2,\cdots,N\} \end{aligned} w 1,w 2,,w Nargmin s.t. i=1Nw iTX iTX iw iw iT1N(i)×1=1, i{1,2,,N}
引入拉格朗日乘子 λ i ,   i ∈ { 1 , 2 , ⋯   , N } \lambda_i,\ i\in\{1,2,\cdots,N\} λi, i{1,2,,N}
L ( w ~ 1 , w ~ 2 , ⋯   , w ~ N , λ ) = ∑ i = 1 N w ~ i T X ~ i T X ~ i w ~ i + ∑ i = 1 N λ i ( w ~ i T 1 ∣ N ( i ) ∣ × 1 − 1 ) ∂ L ( w ~ 1 , w ~ 2 , ⋯   , w ~ N , λ ) / ∂ w ~ i = 2 X i ~ T X i ~ w ~ i + λ i 1 ∣ N ( i ) ∣ × 1 = 0 w ~ i = − 1 2 λ i ( X i ~ T X i ~ ) − 1 1 ∣ N ( i ) ∣ × 1 \begin{aligned} L(\widetilde{\mathbf{w}}_1,\widetilde{\mathbf{w}}_2,\cdots,\widetilde{\mathbf{w}}_N,\lambda)&=\sum_{i=1}^N{\widetilde{\mathbf{w}}_i^T\widetilde{\mathbf{X}}_i^T\widetilde{\mathbf{X}}_i\widetilde{\mathbf{w}}_i}+\sum_{i=1}^N{\lambda_i(\widetilde{\mathbf{w}}_i^T1_{|\mathcal{N}(i)|\times 1}-1)}\\ \partial L(\widetilde{\mathbf{w}}_1,\widetilde{\mathbf{w}}_2,\cdots,\widetilde{\mathbf{w}}_N,\lambda)/\partial \widetilde{\mathbf{w}}_i&=2\widetilde{\mathbf{X}_i}^T\widetilde{\mathbf{X}_i}\widetilde{\mathbf{w}}_i+\lambda_i1_{|\mathcal{N}(i)|\times 1}=0\\ &\widetilde{\mathbf{w}}_i=-\frac12\lambda_i(\widetilde{\mathbf{X}_i}^T\widetilde{\mathbf{X}_i})^{-1}1_{|\mathcal{N}(i)|\times 1}\\ \end{aligned} L(w 1,w 2,,w N,λ)L(w 1,w 2,,w N,λ)/w i=i=1Nw iTX iTX iw i+i=1Nλi(w iT1N(i)×11)=2Xi TXi w i+λi1N(i)×1=0w i=21λi(Xi TXi )11N(i)×1
再根据 w ~ i T 1 ∣ N ( i ) ∣ × 1 = 1 \widetilde{\mathbf{w}}_i^T1_{|\mathcal{N}(i)|\times 1}=1 w iT1N(i)×1=1的约束,归一化之后可得
w ~ i = ( X ~ T X ~ i ) − 1 1 ∣ N ( i ) ∣ × 1 1 1 × ∣ N ( i ) ∣ ( X ~ T X ~ i ) − 1 1 ∣ N ( i ) ∣ × 1 \widetilde{\mathbf{w}}_i=\frac{(\widetilde{\mathbf{X}}^T\widetilde{\mathbf{X}}_i)^{-1}1_{|\mathcal{N} (i)|\times 1}}{1_{1\times |\mathcal{N} (i)|}(\widetilde{\mathbf{X}}^T\widetilde{\mathbf{X}}_i)^{-1}1_{|\mathcal{N} (i)|\times 1}} w i=11×N(i)(X TX i)11N(i)×1(X TX i)11N(i)×1
根据所得结果可以还原 W ∈ R N × N \mathbf{W}\in\mathbb{R}^{N\times N} WRN×N。下面给出求解 Y \mathbf{Y} Y的优化问题:
arg min ⁡ Y   ∑ i = 1 N ( y i − Y w i ) T ( y i − Y w i ) arg min ⁡ Y   ∑ i = 1 N ( y i T y i + w i T Y T Y w i − y i T Y w i − w i T Y T y i ) arg min ⁡ Y   t r a c e ( Y T Y ) + t r a c e ( W T Y T Y W ) − t r a c e ( Y T Y W ) − t r a c e ( W T Y T Y ) arg min ⁡ Y   t r a c e ( Y Y T ) + t r a c e ( Y W W T Y T ) − t r a c e ( Y W Y T ) − t r a c e ( Y W T Y T ) arg min ⁡ Y   t r a c e ( Y ( I + W W T − W − W T ) Y T ) arg min ⁡ Y   t r a c e ( Y Y T ) + t r a c e ( Y W W T Y T ) − t r a c e ( Y W Y T ) − t r a c e ( Y W T Y T ) arg min ⁡ Y   t r a c e ( Y ( I − W ) ( I − W ) T Y T ) \begin{aligned} \argmin\limits_{\mathbf{Y}}\ &\sum_{i=1}^N{\left(\mathbf{y}_i-\mathbf{Y}\mathbf{w}_i\right)^T\left(\mathbf{y}_i-\mathbf{Y}\mathbf{w}_i\right)}\\ \argmin\limits_{\mathbf{Y}}\ &\sum_{i=1}^N{\left(\mathbf{y}_i^T\mathbf{y}_i+\mathbf{w}_i^T\mathbf{Y}^T\mathbf{Y}\mathbf{w}_i-\mathbf{y}_i^T\mathbf{Y}\mathbf{w}_i-\mathbf{w}_i^T\mathbf{Y}^T\mathbf{y}_i\right)}\\ \argmin\limits_{\mathbf{Y}}\ &trace(\mathbf{Y}^T\mathbf{Y})+trace(\mathbf{W}^T\mathbf{Y}^T\mathbf{Y}\mathbf{W})-trace(\mathbf{Y}^T\mathbf{Y}\mathbf{W})-trace(\mathbf{W}^T\mathbf{Y}^T\mathbf{Y})\\ \argmin\limits_{\mathbf{Y}}\ &trace(\mathbf{Y}\mathbf{Y}^T)+trace(\mathbf{Y}\mathbf{W}\mathbf{W}^T\mathbf{Y}^T)-trace(\mathbf{Y}\mathbf{W}\mathbf{Y}^T)-trace(\mathbf{Y}\mathbf{W}^T\mathbf{Y}^T)\\ \argmin\limits_{\mathbf{Y}}\ &trace(\mathbf{Y}(\mathbb{I}+\mathbf{W}\mathbf{W}^T-\mathbf{W}-\mathbf{W}^T)\mathbf{Y}^T)\\ \argmin\limits_{\mathbf{Y}}\ &trace(\mathbf{Y}\mathbf{Y}^T)+trace(\mathbf{Y}\mathbf{W}\mathbf{W}^T\mathbf{Y}^T)-trace(\mathbf{Y}\mathbf{W}\mathbf{Y}^T)-trace(\mathbf{Y}\mathbf{W}^T\mathbf{Y}^T)\\ \argmin\limits_{\mathbf{Y}}\ &trace(\mathbf{Y}(\mathbb{I}-\mathbf{W})(\mathbb{I}-\mathbf{W})^T\mathbf{Y}^T)\\ \end{aligned} Yargmin Yargmin Yargmin Yargmin Yargmin Yargmin Yargmin i=1N(yiYwi)T(yiYwi)i=1N(yiTyi+wiTYTYwiyiTYwiwiTYTyi)trace(YTY)+trace(WTYTYW)trace(YTYW)trace(WTYTY)trace(YYT)+trace(YWWTYT)trace(YWYT)trace(YWTYT)trace(Y(I+WWTWWT)YT)trace(YYT)+trace(YWWTYT)trace(YWYT)trace(YWTYT)trace(Y(IW)(IW)TYT)
为了防止维度的退化且消除尺度大小的影响,引入约束 Y Y T = I \mathbf{Y}\mathbf{Y}^T=\mathbb{I} YYT=I,所以最终的优化问题为:
{ arg min ⁡ Y    t r a c e ( Y ( I − W ) ( I − W ) T Y T ) s . t . Y Y T = I \begin{cases} \argmin\limits_{\mathbf{Y}} \,\,trace(\mathbf{Y}(\mathbb{I} -\mathbf{W})(\mathbb{I} -\mathbf{W})^T\mathbf{Y}^T)\\ s.t. \mathbf{YY}^T=\mathbb{I}\\ \end{cases} Yargmintrace(Y(IW)(IW)TYT)s.t.YYT=I
由上可知,最优值 Y \mathbf{Y} Y为矩阵 ( I − W ) ( I − W ) T (\mathbb{I} -\mathbf{W})(\mathbb{I} -\mathbf{W})^T (IW)(IW)T所对应的最小 d d d个特征值对应的特征向量的转置

( I − W ) 1 N × 1 = 0 (\mathbb{I} -\mathbf{W})1_{N\times 1}=0 (IW)1N×1=0,则说明 ( I − W ) ( I − W ) T (\mathbb{I} -\mathbf{W})(\mathbb{I} -\mathbf{W})^T (IW)(IW)T有最小特征值为0的全1特征向量。因此,从倒数第二小的特征值对应的特征向量开始取。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值