Pytorch——基于DistributedDataParallel单机多GPU并行之broadcast_buffers

在使用Pytorch进行单机多GPU并行时,往往有两种方式,一种是基于DataParallel,另一种是基于DistributedDataParallel。前者太简单了,且速度不如后者,所以不作过多讨论。咱们在使用DistributedDataParallel时,其中有个参数broadcast_buffers,官方给出的解释就是

broadcast_buffers (bool): flag that enables syncing (broadcasting) buffers of
                  the module at beginning of the forward function.
                  (default: ``True``)

也就是说,每次进行forward时,都会对模型中buffers进行统一。因此作了以下小实验验证下这件事!

import os
import argparse

import torch as th
import torch.multiprocessing as mp
import torch.distributed as dist

os.environ['CUDA_VISIBLE_DEVICES'] = '1,2'

class Mod(th.nn.Module):
    def __init__(self):
        super().__init__()
        self.lin = th.nn.Conv2d(3, 5, 3, padding=1)
        self.bn = th.nn.BatchNorm2d(5)


    def forward(self, z):
        print('forward_before\t{}'.format(self.bn.running_mean))
        t = self.lin(z)
        return (self.bn(t)).sum()


def main_worker(rank, world_size, seed=0):
    world_size = world_size


    os.environ['MASTER_ADDR'] = 'localhost'
    os.environ['MASTER_PORT'] = '12345'

    # initialize the process group
    dist.init_process_group("nccl", rank=rank, world_size=world_size)


    mod = Mod().cuda(rank)
    # process_group = th.distributed.new_group(list(range(world_size)))
    # mod = th.nn.SyncBatchNorm.convert_sync_batchnorm(mod, process_group)

    optim = th.optim.Adam(mod.parameters(), lr=1e-3)


    mod = th.nn.parallel.DistributedDataParallel(mod,
            device_ids=[rank], output_device=rank, broadcast_buffers=True)

    if rank % 2 == 0:
        z1 = th.zeros(7, 3, 5, 5).cuda(rank)
    else:
        z1 = th.ones(7, 3, 5, 5).cuda(rank)

    out = mod(z1)

    # if rank == 1:
    print('forward_after\t{}'.format(mod.module.bn.running_mean))

    # mod(z2) # <<---- The presence of this unused call causes an inplace error in backward() below if dec is a DDP module.

    loss = (out**2).mean()

    optim.zero_grad()
    loss.backward()
    optim.step()

    print('backward_after\t{}'.format(mod.module.bn.running_mean))

    out = mod(z1)

    print(mod.module.bn.running_mean)



if __name__ == "__main__":

    mp.spawn(main_worker, nprocs=2, args=(2, 0))

broadcast_buffers=True时,运行结果为

可以发现,在第一次运行forward后,BN中的runing mean会统计各自GPU上的batch统计量,因此得到的结果不同;当进行backward时也不会造成这个buffer的不同。再进行第二次forward之前时,cuda1上的runing mean则会与cuda0上的一致!

broadcast_buffers=False时,运行结果为

这时,就不会一致了。这种情况下,就跟DataParallel下的BN实现一模一样了!所以我们能不能说当broadcast_buffers=True时,就能达到所谓的同步BN的效果呢??????答案是否定的,同步BN的意思是runing mean是统计所有的分布上GPUs上的batch的统计量,而这个仅仅在每次保持其他GPU上的统计量与GPU0上的一致。所以怎么实现同步BN呢?Pytorch已经实现了!利用

 

process_group = th.distributed.new_group(list(range(world_size)))
mod = th.nn.SyncBatchNorm.convert_sync_batchnorm(mod, process_group)

把上面的程序注释删除即可, 最终运行效果如下!

可以发现达到了同步BN效果!需要强调的是,Pytorch的同步BN只能适用于2d形式下,1d不支持!!!!!

  • 9
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
PyTorch支持使用多张显卡进行并行训练,可以使用`torch.nn.DataParallel`或`torch.nn.parallel.DistributedDataParallel`来实现。以下是使用`torch.nn.DataParallel`的示例代码: ```python import torch import torch.nn as nn from torch.utils.data import DataLoader # 定义模型 class MyModel(nn.Module): def __init__(self): super(MyModel, self).__init__() self.fc1 = nn.Linear(10, 5) self.fc2 = nn.Linear(5, 1) def forward(self, x): x = self.fc1(x) x = torch.relu(x) x = self.fc2(x) return x # 定义数据集 class MyDataset(torch.utils.data.Dataset): def __init__(self): self.data = torch.randn(100, 10) self.targets = torch.randn(100, 1) def __getitem__(self, index): return self.data[index], self.targets[index] def __len__(self): return len(self.data) # 定义训练函数 def train(model, dataloader, optimizer, criterion): model.train() for i, (inputs, targets) in enumerate(dataloader): optimizer.zero_grad() outputs = model(inputs) loss = criterion(outputs, targets) loss.backward() optimizer.step() # 创建模型、数据集、数据加载器、优化器、损失函数 model = MyModel() dataset = MyDataset() dataloader = DataLoader(dataset, batch_size=8, shuffle=True) optimizer = torch.optim.SGD(model.parameters(), lr=0.01) criterion = nn.MSELoss() # 使用DataParallel进行多GPU并行训练 model = nn.DataParallel(model) device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") model.to(device) for epoch in range(10): train(model, dataloader, optimizer, criterion) ``` 在上面的代码中,我们首先定义了一个模型`MyModel`和一个数据集`MyDataset`。然后,我们使用`DataLoader`将数据集加载到内存中。接下来,我们创建了一个优化器和一个损失函数。最后,我们将模型移到GPU上,并使用`DataParallel`对其进行并行处理。在训练循环中,我们调用`train`函数来训练模型。`train`函数的参数分别是模型、数据加载器、优化器和损失函数。由于我们在模型上调用了`DataParallel`,因此在训练循环中,我们不需要手动处理多个GPU并行计算。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值