Singular Value Fine-tuning: Few-shot Segmentation requires Few-parameters Fine-tuning
奇异值微调:少参数微调的小样本分割新范式 | NeurIPS 2022
paper | code
作者:南京理工大学
#小样本分割 #微调 #SVD分割 #BAM+SVF
一句话概括:为解决过拟合问题,将backbone参数分解为三个矩阵,在训练时对其中一个奇异值矩阵进行微调,其余二者进行冻结,取得了比较好的泛化和分割效果。
1. 摘要
Freeze 预训练的backbone((冻结主干网络的参数)已经成为FSS任务中预防 over-fitting 的标准范式,但本文提出一种新范式,即fine-tuning a small part of parameters in the backbone。我们的方法通过Singular Value Decomposition (SVD) 将主干参数分解为三个连续的矩阵,然后仅微调奇异值并保持其他值不变。上述设计允许模型调整新类的特征表示,同时在预训练的主干中保持语义线索。
2. 引言
·问题:少样本带来的过拟合
·原始方法:学过头了 -> 限制模型的学习能力,即freeze()。
也有特征融合以及原型以提高泛化能力,但效果不如预训练。
·预训练的缺陷:预训练主干中包含的语义线索可以与支持图像中显示的对象无关,从而为在FSS中分割新类对象带来意想不到的障碍。
·引入方法:微调

提出一种新的小样本分割方法,通过奇异值分解将主干网络参数分解,并仅微调奇异值矩阵,有效解决了过拟合问题,提高了模型泛化能力。
最低0.47元/天 解锁文章
2526

被折叠的 条评论
为什么被折叠?



