【动态规划】UPC-7780(状压DP)

最短Hamilton路径

时间限制: 2 Sec  内存限制: 128 MB

题目描述

给定一张 n(n≤20) 个点的带权无向图,点从 0~n-1 标号,求起点 0 到终点 n-1 的最短Hamilton路径。 Hamilton路径的定义是从 0 到 n-1 不重不漏地经过每个点恰好一次。

 

输入

第一行一个整数n。
接下来n行每行n个整数,其中第i行第j个整数表示点i到j的距离(一个不超过10^7的正整数,记为a[i,j])。
对于任意的x,y,z,数据保证 a[x,x]=0,a[x,y]=a[y,x] 并且 a[x,y]+a[y,z]>=a[x,z]。

 

输出

一个整数,表示最短Hamilton路径的长度。

 

样例输入

4
0 2 1 3
2 0 2 1
1 2 0 1
3 1 1 0

 

样例输出

4

 

提示

从0到3的Hamilton路径有两条,0-1-2-3和0-2-1-3。前者的长度为2+2+1=5,后者的长度为1+2+1=4

思路

这道题乍一看就是一道完完全全的图论题嘛,从起点到终点的最短路径,而且还不能重复经过同一点(汉密顿路径),上来就是一顿bfs,提交,time limit exceeded,当时一脸懵逼,重新检查了一边复杂度,果不其然的超时了,20个点进行全排列,20!=2.432902e+18,直接到了1e18的复杂度了有木有,不爆才怪。

所以开始寻找其他解题方法,google中…看到网上有其他人用状压DP的方法解题,简单了解了一下思路,发现很有道理,状压DP的应用范围并不是很广,要求数据量要比较小,而这题的n<=20就很符合状压的胃口,之所以能够用状压DP的另一个原因是它的每个点只有两种状态,能够选取和不能够选取,也就可以分别用0/1表示了。

在这里我们令1代表可选取的状态,0代表不可选取的状态,所以当全部可选取状态(全为1)下从起始点到达终点的最短路径就是我们要求的最短汉密顿路径了,那么有人会想了,这样的状态怎么转移呢,我们可以用dp[j][i]表示在i状态下,到达j点的最短汉密顿路径。那么这个dp[j][i]怎么来的呢,我们通过分析可以发现,到达j点的汉密顿路径可以由去掉j点之外到达另一点k的汉密顿路径dp[k][i^(1<<(j-1))],再加上k点到j点的距离mapp[k][j](这里我们用mapp[n][n]数组来存储的图)来获得(类似于通过k点来松弛),这里的i^(1<<(j-1))就是j点不可选取的状态(稍稍思考一下就能得出哦),所以我们就可以得到状态转移方程dp[j][i]=min(dp[j][i],dp[k][i^(1<<(j-1))]+mapp[k][j]),这样我们就不难写出代码了。

AC代码如下:

#include<bits/stdc++.h>

using namespace std;
int dp[21][1<<20];
int mapp[21][21];
int main()
{
    int n;
    cin>>n;
    for(int i=1;i<=n;i++){
        for(int j=1;j<=n;j++){
            cin>>mapp[i][j];
        }
    }
    int allstate=(1<<n)-1;
    memset(dp,0x3F,sizeof(dp));
    dp[1][0]=0;
    for(int i=1;i<=allstate;i++){
        for(int j=1;j<=n;j++){
            if(i&1<<(j-1)){
                for(int k=1;k<=n;k++){
                    if(i&1<<(k-1)){
                        dp[j][i]=min(dp[j][i],dp[k][i^(1<<(j-1))]+mapp[k][j]);
                    }
                }
            }
        }
    }
//    for(int i=1;i<1<<n;i++){
//            printf("%2d",i);
//        for(int j=1;j<=n;j++){
//            printf("%15d",dp[j][i]);
//        }
//        cout<<endl;
//    }
    cout<<dp[n][allstate]<<endl;
    return 0;
}

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值