概率论早期最重要的学者

1039a4b35c9c54d2128fff91ee2dbbba.png

AI 时代学什么,怎么学 / 2024.9

7e5574a833ad3e3bfc791d36bea496e9.png

任何时候,我们想要从“不懂”到“懂”,都必须经过中间的学习区。

学习区天然伴随着沮丧感,会让人非常不舒服。而且,这个过程往往比我们预想的更长,因为我们总期待自己能够很快从“不懂”到“懂”。

Susan Kuang


本文来自:图灵新知

711f7dc69ba5838b6d0419295e288e9d.png

他出生于瑞士的巴塞尔,在他的家族中,有五六位成员曾在数学和概率论领域中做出过重要贡献,雅各布是其中最负盛名的。他的贡献中,最重要的、对后世起了最大影响的,就是“频率接近比率”这个论断的数学证明。

学过平面几何的读者知道,在数学上对论证的要求很严格。为证明一个几何定理,例如三角形的三条高相交于一点,要经过多步推导,每一步都要有严格的依据,一丝不苟。“大体上”“左右”“大约”这些含糊的字眼多次出现,这够不上数学论证的标准。

在历史上,第一个企图对“当试验次数 n 愈来愈大时,频率m/n 会愈来愈接近比率 p=ω/ (ω+b)”这个论断给予严格的意义和数学证明的,是早期概率论历史上最重要的学者雅各布·伯努利(1654—1705)。他出生于瑞士的巴塞尔,在他的家族中,有五六位成员曾在数学和概率论领域中做出过重要贡献,雅各布是其中最负盛名的。他的贡献中,最重要的、对后世起了最大影响的,就是“频率接近比率”这个论断的数学证明。说来有趣的是,他之所以研究这个问题,并非因为他对这个论断之真伪存在疑问。如他自己在著作中所说,甚至那些最愚笨的人,出于其自然的天性而无须他人指点,也会相信这一点。因为这个论断得到如此广泛的公认,它理应有其理论上的根据所在,他的目标就是找出这个根据。

除了这个问题以外,伯努利还对现代高等数学的基础——微积分的发展起了重要的作用。他生活的那段时期正值牛顿和莱布尼茨发明了微积分。伯努利与莱布尼茨有着良好的个人关系,他通过与莱布尼茨的通信,与后者探讨微积分研究中的问题。有的学者认为,他当时对这个重要领域的贡献,是牛、莱以下的第一人。

在现代,学者们进行学术交流的方式很多。交通和通信的进步,使个人接触和会议交流变得很方便,还有众多的期刊与专业著作等。在伯努利时代则不同,当时学术交流的主要手段,是学者之间的个人通信。就伯努利而言,他在概率论方面的研究,得益于与惠更斯的联系。惠更斯(1629—1695)是欧洲当时最著名的概率论学者,他在 1657 年出版的著作《机遇的规律》,是卡尔达诺《机遇博弈》之后最有影响力的概率论著作,曾在长达 50 年的时间内成为这门学科的标准教科书。伯努利与惠更斯长期保持通信联系,他仔细研究过惠更斯的上述著作,并为这本书写了详细的注解,这些都写进了他的成名作《推测术》中。

《推测术》在概率史上的评价很高。有的学者认为,它的问世标志着概率论脱离其萌芽状态而走向严格数学化发展方向的开端。伯努利写这本著作是在他生命的最后两年(他死于 1705 年),在他去世时书尚未完全定稿。遗留的工作由他的侄儿、概率论学家尼科拉斯·伯努利完成,后又经过一番周折,这部著作才得于 1713 年出版。

该书分 4 个部分。前 3 部分是到那时为止有关古典概率计算所积累的一些成果的总结和提高。重要的是第 4 部分,在其中他用严格的数学方法证明了前面提及的那个结论:当 n 愈来愈大时,白球出现的频率 m/n 愈来愈接近白球在盒中的比率 ω/ (ω+b )。

这个结论现在通称为“大数定律”。在概率论上还有许多类似的结果也称作大数定律,为加以分别,特别称呼它为“伯努利大数定律”。

伯努利大数定律的重大意义,在于它揭示了因偶然性的作用而呈现的杂乱无章现象中的一种规律性,或简单地讲,在纷乱中找到了一种秩序。如果你每天在盒中抽一个球并记下其结果(再放回去),当抽到白球时记以 1 而抽到黑球时记以 0,则你得到的是一串杂乱的数字,例如,

1100010011110110000010110…

外表上看不出有何特征或规律性。如果有另一个人把你刚才所做的重做一遍,他也得出这样一串由 0 和 1 构成的数字,同样杂乱无章,但与你那一串并不相同。伯努利大数定律告诉我们,这表面的纷乱之下其实存在着一种规律性,即在这数串中,1 所占的比率愈来愈稳定到一个值上面,此值即盒中白球的比率。在开始的一段中,比率的变化可以是很大的,这个稳定性要到数串的长度足够“大”时才显示出来,这正是大数定律这个名称的由来。

跳出这个盒子模型,对大数定律的意义做一种更宽广的解释,可以不夸张地说,它反映了我们的世界的一个基本规律:在一个包含众多个体的大群体中,由于偶然性而产生的个体差异,着眼在一个个的个体上看,是杂乱无章、毫无规律、难于预测的;但由于大数定律的作用,整个群体却能呈现某种稳定的形态。例如一个封闭容器中的气体,它包含大量的分子,它们各自在每时每刻的位置、速度和方向上,都以一种偶然的方式在变化着,但容器中的气体仍能保有一个稳定的压力和温度。电流是由电子运动形成的,每个电子的行为杂乱而不可预测,但整体看呈现稳定的电流强度。在社会、经济领域中,群体中个体的状况千差万别,且变化不定,但一些反映群体状况的平均指标,在一定时期内能保持稳定,或呈现规律性的变化。究其根源,都是由于大数定律的作用。

  推荐阅读

c90ce6096c29b5897b82ffe49c134785.png

《概率导论(第2版·修订版)》

作者:[美] 迪米特里·伯特瑟卡斯,[美] 约翰·齐齐克利斯

译者:郑忠国 童行伟

从直观、自然的角度阐述概率;适合理工科学生入门,便于自学。

本书多年来在美国麻省理工学院、斯坦福大学、加州大学等名校被用作概率课程教材,经过课堂检验和众多师生的反馈得以不断完善,是一本在表述简洁和推理严密之间取得优美平衡的经典作品。

d5f8eab97b5bc41cf7f7b605fb1defd9.jpeg

《普林斯顿概率论读本》

作者:[美] 史蒂文·J. 米勒(Steven J. Miller)

译者:李馨

普林斯顿读本三剑客之概率论,概率论教材,叙述深入浅出,提供课程视频和讲义,概率论学习图书。

对于学生来说,学习概率论及其众多应用、技术和方法似乎非常费力且令人生畏,而这正是本书的用武之地。这本通俗易懂的学习指南旨在用作概率论的独立教材或相关课程的补充材料,可帮助学生轻松地学习概率论知识并取得良好效果。

本书基于史蒂文·J. 米勒在布朗大学、曼荷莲学院和威廉姆斯学院教授的课程而作。米勒通过先修课程材料、各种难度的问题及证明对概率论这一数学领域进行了详细介绍。探索每个主题时,米勒首先引导学生运用直觉,然后才深入技术细节。本书涵盖的主题很广,并且对材料加以重复以强化知识。读完本书,学生不仅能掌握概率论,还能为将来学习其他课程打下基础。

94fc5ae9976602e292c438a271bc136d.png

《概率论沉思录》

作者:埃德温·汤普森·杰恩斯

译者:廖海仁

著名数学物理学家,圣路易斯华盛顿大学和斯坦福大学教授,统计力学和概率统计推断方面权谋埃德温·汤普森·杰恩斯,40年思想著作;

无数读者苦等15年的概率论神作,英文版豆瓣评分9.4高分;

概率论作为逻辑的延伸,是所有科学推断的基础。本书收集了概率统计的各种线索,将概率和统计推断融合在一起,用新的观点生动地描述了概率论在物理学、数学、经济学、化学和生物学等领域中的广泛应用,尤其是阐述了贝叶斯理论的丰富应用,弥补了传统概率论和统计学的不足,并揭开了众多悖论背后的玄机。

长按二维码—识别—关注

0848074474438c23f1c17583bf2ab201.jpeg

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值