【数值分析】雅可比迭代和高斯-赛德尔迭代求解线性方程组应用举例(编程求解)

本文通过编程实例,展示了雅可比迭代和高斯-赛德尔迭代法在求解线性方程组中的应用。通过结果分析,得出高斯-赛德尔迭代法在收敛速度上优于雅可比迭代的结论。
摘要由CSDN通过智能技术生成

题目

给定方程组如下:
[ 8 − 3 2 4 11 − 1 6 3 12 ] [ x 1 x 2 x 3 ] = [ 20 33 36 ] \begin{bmatrix} 8 & -3 & 2 \\ 4 & 11 & -1\\ 6 & 3 & 12 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}= \begin{bmatrix} 20 \\ 33 \\ 36 \end{bmatrix} 84631132112

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Bosenya12

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值