电力系统分析常用的三种迭代方法(雅克比、高斯赛德尔、牛顿拉夫逊法)求解方程的精确解

一、分别运用雅克比、高斯-赛德尔两种迭代方法计算如下方程:

 

 解:由于系数方程组不满足严格行(列)对角优矩阵的条件,即迭代不收敛,故将方程组转化成以下形式:

 

(一)Jacobi迭代法:

迭代方程可以化为:

 得迭代矩阵:

 可以在Matlab编写出以下迭代程序,创建脚本函数文件名为Jacobi_solve.m:

 

创建好函数文件之后,新建脚本,输入

A: 线性方程组的系数矩阵(n*n,非奇异)
b: 方程组右边的常数项列向量
n: 方程组维数
x0: 初始值
tol: 精度上限值
N:  最大迭代次数

调用函数Jacobi_solve.m:

 

 

在命令窗口可以看出,当取:

 时,得:

 查看程序结果验证:

 依次收敛下去,雅可比迭代12次,得出程序精确解:

 

(二)Gauss_Seidel迭代法:

迭代方程可以化为:

 

 得迭代矩阵:

 可以在Matlab编写出以下迭代程序,创建名为Gauss_Seidel_solve.m:

 创建好函数文件之后,在方法一得基础上,输入量不变,注释掉调用Jacobi_solve,更改调用函数Gauss_Seidel_solve.m:,运行函数,观察命令窗口出现具体迭代过程:

 此时,在命令窗口可以看出,当取:

 时,得:

 继续迭代:

 依次收敛迭代下去:

 在命令行窗口可以看出,高斯—赛德尔迭代只需要迭代8次,比雅可比迭代快,程序精确解为:

 

二、采用牛顿-拉夫逊方法求解方程的根:xe^x-1=0

 

解:初步判断:当x=0时,y=-1<0,当x=1时,y=e-1>0,函数在[0,1]内方程有解,在指令窗口输入x=0:0.0001:1,确定好横坐标的范围后,观察函数在坐标系中的具体图像:

 由上图可以看出函数y在坐标系中的图线,可以看到过零点在0.5-0.6之间,图中发现过零点在0.567附件。我们可以在matlab中新建脚本,按照牛顿拉夫逊求解方程法编写好函数之后,创建函数文件名为newton.m,对函数进行精确求解(程序如下):

 在函数图像的基础上求导函数,精度为0.0001,继续编写调用newton(),取x=0.5,0.5710时,画出函数切线,观察验证迭代过程趋向:

 将箭头中黑色框部分放大观察一次,二次导函数切线过零点: 

验证结果发现,函数的二次导切线过零点已经非常趋向于函数的真解,因此:一共迭代3次即可得出函数精确解:

                                                       x=0.5671

### IEEE14节点系统的潮流计算方法与工具 对于IEEE14节点系统的潮流计算,通常采用牛顿-拉夫逊法或高斯赛德尔法来求解非线性方程组。这些方法旨在找到满足功率平衡条件下的电压幅值和相角。 #### 牛顿-拉夫逊法 该方法通过迭代方式决非线性的潮流方程,在每次迭代过程中构建可比矩阵并更新状态变量直到收敛。此方法具有较快的收敛速度以及较高的精度[^1]。 ```matlab function [V, iter] = newton_raphson(Ybus, Sbus, V0, tol) % Ybus: 节点导纳矩阵 % Sbus: 注入复功率向量 (单位:MVA) % V0 : 初始电压猜测值(标幺制), 形状为 n×1 的列向量 % tol: 容差标准 n = length(Sbus); % 总节点数 Va = angle(V0); Vm = abs(V0); iter = 0; max_iter = 25; while true mis = Sbus - V .* conj(Ybus * V); % 计算误差 dS_dVa = zeros(n, 1); dS_dVm = zeros(n, 1); for i = 1:n dS_dVa(i) = imag(conj(mis(i)) * j * V(i)); dS_dVm(i) = real(conj(mis(i)) * V(i)); end J = build_jacobian(Ybus, Va, Vm); % 构建雅克比矩阵 dx = inv(J) * [-dS_dVa; -dS_dVm]; % 更新修正量 delta_Va = reshape(dx(1:n), [], 1); delta_Vm = reshape(dx(n+1:end), [], 1); Va = Va + delta_Va'; Vm = Vm + delta_Vm'; V = polar_to_rect(Vm, Va); err = norm([delta_Va; delta_Vm]); iter = iter + 1; if err < tol || iter >= max_iter break; end end function J = build_jacobian(Ybus, Va, Vm) % 实现各比矩阵的具体构造逻辑... end function z = polar_to_rect(rho, theta) z = rho .*(cos(theta)+1i*sin(theta)); end ``` #### 工具支持 多种软件包可以用于执行上述过程中的模拟工作: - **MATPOWER**: 这是一个基于MATLAB的强大电力系统分析平台,提供了丰富的功能来进行各种类型的电网研究。 - **PowerWorld Simulator**: 提供图形界面操作环境的同时也允许脚本编程接口接入自定义模型。 - **DIgSILENT PowerFactory**: 高度集成化的配电网络规划仿真决方案之一,适用于复杂场景下精确度要求高的场合。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

电气Macak

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值