计算机数值方法-雅可比迭代和高斯赛德尔迭代

算法流程

其实迭代法前面已经学习过啦,这里的迭代是在前面迭代的基础上的高阶形式——即解决线性方程组的问题。

下面简单介绍雅克比迭代的基本流程。

雅可比迭代

有一线性方程组, A x = b Ax=b Ax=b,其中:
在这里插入图片描述
我们可以将其化为以下形式:
x i = B x j + f , ( i = 1 , 2 , 3...... n , j = 1 , 2 , 3 , ¬ i . . . . . n ) x_i=Bx_j+f,(i=1,2,3......n,j=1,2,3,\lnot i.....n) xi=Bxj+f,(i=1,2,3......n,j=1,2,3,¬i.....n)
则迭代形式可化为:
x i = B x i + 1 + f x^{i}=Bx^{i+1}+f xi=Bxi+1+f
j a c o b i jacobi jacobi迭代法的流程是:
若系数矩阵 A A A是非奇异矩阵且 a i i ̸ ≠ 0 a_{ii}\not\ne0 aii=0,则可以将 A A A分裂成:
A = D + L + U A=D+L+U A=D+L+U
其中 D D D为对角矩阵, L L L为下三角矩阵, U U U为上三角矩阵
则迭代公式可以转换为:
x i = − D − 1 ( L + U ) x i + 1 + f x^{i}=-D^{-1}(L+U)x^{i+1}+f xi=D1(L+U)xi+1+f
整理得:
在这里插入图片描述
具此求解.

高斯-赛德尔迭代

在雅可比迭代的流程中我们不难发现
在这里插入图片描述
前一步计算出来的 x i k + 1 x^{k+1}_i xik+1在下一步中并没有利用到,而新计算出来的值必定比前置更为精确,故为了使计算更为精确,我们将下一步中的 x i k x^k_i xik替换为上一步中计算出来的 x i k + 1 x^{k+1}_i xik+1进行计算,这种算法就叫做高斯-赛德尔迭代(Gauss-Seidel)
化简得到:
在这里插入图片描述

C++代码

雅可比迭代:

#include <bits/stdc++.h>
using namespace std;
typedef pair<int, int> PII;
#define int long long
const int N = 1e3 + 10;
double A[N][N], B[N], X[N];
int n;
void jacobi()
{
    int k = N;
    while (k--)
    {
        double X2[N];
        for (int i = 0; i < n; i++)
        {
            double cnt = 0;
            for (int j = 0; j < n; j++)
            {
                if (j == i)
                    continue;
                else
                    cnt += A[i][j] * X[j];
            }
            X2[i] = (B[i] - cnt) / A[i][i];
        }
        for(int i= 0; i < n; i++) X[i]=X2[i];
    }
    for (int i = 0; i < n; i++)
        printf("X[%d]=%lf%c", i + 1, X2[i], i == n - 1 ? '\n' : ' ');
}

signed main()
{
    cin >> n;
    for (int i = 0; i < n; i++)
        for (int j = 0; j < n; j++)
            cin >> A[i][j];
    for (int i = 0; i < n; i++)
        cin >> B[i];
    jacobi();
    return 0;
}

高斯赛德尔迭代:

#include <bits/stdc++.h>
using namespace std;
typedef pair<int, int> PII;
#define int long long
const int N = 1e3 + 10;
double A[N][N], B[N], X[N];
int n;
void gauss_seidel()
{
    int k = N;
    while (k--)
    {
        for (int i = 0; i < n; i++)
        {
            double cnt = 0;
            for (int j = 0; j < n; j++)
            {
                if (j == i)
                    continue;
                else
                    cnt += A[i][j] * X[j];
            }
            X[i] = (B[i] - cnt) / A[i][i];
            
        }
    }
    for (int i = 0; i < n; i++)
        printf("X[%d]=%lf%c", i + 1, X[i], i == n - 1 ? '\n' : ' ');
}

signed main()
{
    cin >> n;
    for (int i = 0; i < n; i++)
        for (int j = 0; j < n; j++)
            cin >> A[i][j];
    for (int i = 0; i < n; i++)
        cin >> B[i];
    gauss_seidel();
    return 0;
}

python代码

雅可比迭代:

在这里插入代码片

高斯-赛德尔迭代:

在这里插入代码片
### 回答1: 雅可比迭代高斯-德尔迭代是两种常用的线性方程组迭代求解方法,它们的收敛性能取决于矩阵的特性和迭代顺序。 对于雅可比迭代,它的收敛性受到矩阵是否是对角占优的限制,即矩阵中每行对角线上的元素绝对值大于等于该行其它元素绝对值之和。如果矩阵满足对角占优条件,那么雅可比迭代会收敛,且收敛速度比较慢。 对于高斯-德尔迭代,它比雅可比迭代更快地收敛,但是它的收敛性需要满足矩阵对称正定或者对称半正定。如果矩阵不满足这些条件,高斯-德尔迭代可能会发散。 综上所述,雅可比迭代高斯-德尔迭代的收敛性都受到矩阵的特性限制,需要根据具体问题选择合适的迭代求解方法。 ### 回答2: 雅可比迭代高斯-德尔迭代都是用于解决线性方程组的迭代方法雅可比迭代是一种简单的迭代方法,它通过将方程组的每个未知数的解表示为其他未知数的线性组合来逐步逼近方程组的解。在每一次迭代中,雅可比迭代将使用上一次迭代中的解来计算新的解。然后,新的解将用于下一次迭代,直到解收敛于方程组的解。雅可比迭代的收敛性受到方程组条件数的影响。如果方程组的条件数较大,雅可比迭代可能会收敛得很慢,甚至无法收敛。 高斯-德尔迭代雅可比迭代的一种改进方法。它与雅可比迭代的不同之处在于,在计算新解时它会使用当前迭代中已经计算出的新解。这使得高斯-德尔迭代雅可比迭代更加快速收敛。高斯-德尔迭代的收敛性也受到方程组条件数的影响,但相对于雅可比迭代而言,高斯-德尔迭代的收敛性更强。 无论是雅可比迭代还是高斯-德尔迭代,其收敛性还与方程组的特性有关。如果方程组是对角优势的,即每个方程的主对角元素的绝对值大于其他元素的绝对值之和,那么这两种迭代方法通常会更快地收敛。但如果方程组不满足对角优势条件,这两种方法收敛的速度可能会较慢。 总体而言,雅可比迭代高斯-德尔迭代都是有效解决线性方程组的迭代方法。然而,在应用中需要根据方程组的特性和条件数等因素来选择合适的迭代方法以确保收敛性和计算效率。 ### 回答3: 雅可比迭代高斯-德尔迭代是求解线性系统的迭代方法。其中雅可比迭代每个迭代步骤只更新一个未知数,而高斯-德尔迭代每个迭代步骤更新所有未知数。两者都通过不断迭代,逐渐接近线性系统的解。 在收敛性方面,雅可比迭代高斯-德尔迭代都需要满足矩阵的某些性质,比如对角优势性、正定性等。 对于雅可比迭代,如果矩阵是严格对角占优的,则迭代会收敛。严格对角占优是指矩阵的每个对角元素的绝对值大于其所在行其他非对角元素绝对值之和。对于非严格对角占优的矩阵雅可比迭代可能不收敛或者收敛速度非常慢。 而对于高斯-德尔迭代,它比雅可比迭代更快地收敛。当矩阵是正定对称的时候,高斯-德尔迭代能够保证绝对收敛。正定对称是指矩阵所有特征值都为正并且矩阵为对称矩阵。对于非正定对称的矩阵高斯-德尔迭代的收敛性就无法保证了。 总的来说,雅可比迭代高斯-德尔迭代的收敛性都依赖于线性系统的矩阵性质。而严格对角占优和正定对称是保证迭代收敛性的重要条件。在实际应用中,我们可以通过对矩阵进行重排或者使用预处理方法来提高迭代的收敛性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值