【论文阅读】Using Deep Learning to Eavesdrop on HDMI from its Unintended Electromagnetic Emanations(2024)

Deep-TEMPEST: Using Deep Learning to Eavesdrop on HDMI from its Unintended Electromagnetic Emanations(2024)
在这里插入图片描述

摘要

In this work, we address(解决) the problem of eavesdropping on digital video displays by analyzing the electromagnetic waves(电磁波) that unintentionally emanate from the cables(电缆) and connectors(连接器), particularly HDMI. This problem is known as TEMPEST. Compared to the analog(模拟) case (VGA), the digital case is harder due to a 10-bit encoding that results in a much larger bandwidth(更大的带宽) and non-linear mapping(非线性映射) between the observed signal(观察信号) and the pixel’s intensity(像素强度). As a result(因此), eavesdropping systems designed for the analog case obtain unclear and difficult-to-read images when applied to digital video. The proposed solution is to recast the problem as an inverse problem(逆问题) and train a deep learning module to map the observed electromagnetic signal(电磁信号) back to the displayed image. However, this approach still requires a detailed mathematical analysis(详细的数学分析) of the signal, firstly to determine the frequency at which to tune but also to produce training samples without actually needing a real TEMPEST setup. This saves time and avoids the need to obtain these samples, especially if several configurations(配置) are being considered. Our focus is on improving the average Character Error Rate(平均字符错误率) in text, and our system improves this rate by over 60 percentage points compared to previous available implementations. The proposed system is based on widely available Software Defined Radio and is fully open-source, seamlessly integrated into the popular GNU Radio framework. We also share the dataset we generated for training, which comprises both simulated and over 1000 real captures. Finally(最后), we discuss some countermeasures to minimize the potential risk of being eavesdropped by systems designed based on similar principles(原则).

论文链接

Deep-TEMPEST: Using Deep Learning to Eavesdrop on HDMI from its Unintended Electromagnetic Emanations

窃听信道模型(Eavesdropping Channel Model)是指在无线通信中,除了合法通信的用户之外,还存在一些未经授权的窃听者,他们可能会窃听到通信过程中的信息。为了保护通信的安全性,需要对窃听信道进行建模和分析。 在MATLAB中,可以使用通信系统工具箱中的函数来实现窃听信道模型。以下是一个简单的示例代码: ```matlab % 定义无线信道 h = rayleighchan(1/1000, 50, [0 1/4 1/2 1], [0 -3 -6 -9]); % 定义发送信号 tx = randi([0 1], 1000, 1); % 模拟发送和接收过程 rx = filter(h, tx); snr = 10; rx_eavesdrop = awgn(rx, snr, 'measured'); % 显示结果 subplot(2,1,1); plot(abs(h.PathGains)); title('Channel Impulse Response'); subplot(2,1,2); plot(abs(fft(rx))); hold on; plot(abs(fft(rx_eavesdrop))); title('Spectrum of Received Signals'); legend('Received Signal', 'Eavesdropping Signal'); ``` 在这个示例代码中,我们首先定义了一个Rayleigh衰落信道对象`h`,其参数为:采样率1/1000,最大多径时延50个采样周期,路径增益为0、-3、-6和-9dB。接着,我们定义了一个随机的、长度为1000的发送信号`tx`。然后,我们使用`filter`函数模拟了发送和接收过程,并使用`awgn`函数在接收信号中添加了高斯白噪声。最后,我们绘制了信道脉冲响应和接收信号的频谱图,并比较了正常接收信号和窃听信号的区别。 需要注意的是,在实际应用中,窃听信道模型可能会更加复杂,例如考虑多径信道、干扰等因素。因此,需要根据具体应用场景进行建模和分析。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Bosenya12

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值