有向图的强连通分量(Tarjian)

强连通分量


有向图强连通分量:在有向图G中,如果两个顶点vi,vj间(vi>vj)有一条从vi到vj的有向路径,同时还有一条从vj到vi的有向路径,则称两个顶点强连通(strongly connected)。如果有向图G的每两个顶点都强连通,称G是一个强连通图。有向图的极大强连通子图,称为强连通分量(strongly connected components)。

下图中,子图{1,2,3,4}为一个强连通分量,因为顶点1,2,3,4两两可达。{5},{6}也分别是两个强连通分量。
在这里插入图片描述

Tarjian算法

对于一个强连通分量 S C C SCC SCC,从任何一个点出发都能遍历整个图。假设 S C C SCC SCC 第一个发现的点为 x x x ,那么在访问完 x x x 的所有子节点直接输出就是这个 S C C SCC SCC,可是我们不知道这个点是不是 S C C SCC SCC 第一个被发现的点,

问题转化为判断一个点是否为 S C C SCC SCC 中最先被发现的点。

假设当前的点为 u u u
如果从 u u u 的子节点可以到达 u u u 的祖先节点,那么 u u u 肯定不是他所在的 S C C SCC SCC 第一个被发现的点。如果从 u u u 的子节点最多只能到达 u u u ,那么 u u u 肯定是第一个点。

之前求无向图割顶和桥的问题时,引入过 l o w low low 数组,同样的需要 l o w low low 数组。


vector<int> G[maxn];
int pre[maxn], low[maxn], sccno[maxn], dfs_clock, scc_cnt;
stack<int> s;

void dfs(int u){
    pre[u] = low[u] = ++dfs_clock;          // 标记每个点访问时间
    s.push(u);
    for (int i = 0; i < G[u].size(); i++){  // 遍历 u 所有子节点
        int v = G[u][i];
        if(!pre[v]){
            dfs(v);
            low[u] = min(low[u], low[v]);    // 用子节点的 low 值更新 u 的 low 值。
        }else if(!sccno[v])                  // 如果 v 不属于 SCC
            low[u] = min(low[u], pre[v]);    // 反向边更新 u 的 low 值
    }
    if(low[u] == pre[u]){                   // 如果 u 及其后代最早能达到的祖先只能到 u
        scc_cnt++;                          // u 就是 SCC 访问第一个点
        while(1){
            int x = s.top();
            s.pop();
            sccno[x] = scc_cnt;
            if(x == u)
                break;
        }
    }
}


void find_scc(int n){
    dfs_clock = scc_cnt = 0;
    memset(sccno, 0, sizeof sccno);
    memset(pre, 0, sizeof pre);
    for(int i = 0; i < n; i++){
        if(!pre[i])
            dfs(i);
    }
}

程序用一个栈保存当前 SCC 中的左右节点,

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值