【每日算法Day 109】五大解法,带你深入了解完全背包方案数

今天这题是完全背包问题 + 背包问题方案数,我一共列举了 5 种解法,层层递进优化。并且从两个角度殊途同归,最终优化到同一个式子。强烈建议掌握,对理解背包问题有很大帮助。

题目链接

LeetCode 面试题 08.11. 硬币[1]

题目描述

给定数量不限的硬币,币值为 25 分、10 分、5 分和 1 分,编写代码计算 n 分有几种表示法。(结果可能会很大,你需要将结果模上 1000000007)

说明:

  • 0 <= n (总金额) <= 1000000

示例1

        输入:
n = 5
输出:
2
解释:
有两种方式可以凑成总金额:
5=5
5=1+1+1+1+1
      

示例2

        输入:
n = 10
输出:
4
解释:
有四种方式可以凑成总金额:
10=10
10=5+5
10=5+1+1+1+1+1
10=1+1+1+1+1+1+1+1+1+1
      

题解

首先我们规定一些记号,用 p[i] 来表示第 i 种硬币的面值,用 dp[i][j] 表示用前 i 种硬币组成面值 j 的方案数。令 n 表示需要表示的面值,m 表示硬币数。

朴素想法(错误)

首先我们可以想到,最朴素的方法不就是组成面值 j 的方案数等于所有组成面值 j-p[k] 的方案数之和

dp[i][j] = \sum_{k=0}^{i}{dp[i][j-p[k]]} \\

但是这样有个很严重的问题,就是会产生重复计算,也就是将 6 = 1 + 56 = 5 + 1 视为两种情况。

动态规划 1

朴素想法的纠正方法就是,规定拆解后的数字是有序的,这样就不会出现重复计算了。

那么具体怎么实现呢?其实只需要加上一个约束,也就是强制令 p[k] 为组成面值 j 的最大面值硬币。那么用掉它之后,组成面值 j-p[k] 的最大面值硬币仍然只能是 p[k] ,这样转移下去就一定是有序的,不会出现面值突然增大的情况。转移方程只需要修改一下转移后的可用硬币 i

dp[i][j] = \sum_{k=0}^{i}{dp[k][j-p[k]]} \\

时间复杂度 O(nm^2) ,空间复杂度 O(nm)

动态规划 2(超时)

另一条思考路线是,我们假设第 i 个硬币用 k 枚,然后枚举所有的 k 就行了。转移方程很好写:

dp[i][j] = \sum_{k=0}^{\lfloor j/p[i] \rfloor}{dp[i-1][j-k \cdot p[i]]} \\

但是这样时间复杂度太高了,直接超时。

时间复杂度 O(n^2m) ,空间复杂度 O(nm)

转移方程优化

神奇的地方来了,上面两种方法,全部可以优化为同一个式子,仔细看好了。

动态规划 1:

首先看第一个方法,转移方程为:

dp[i][j] = \sum_{k=0}^{i}{dp[k][j-p[k]]} \\

我们令 i = i - 1 ,又可以得到:

dp[i-1][j] = \sum_{k=0}^{i-1}{dp[k][j-p[k]]} \\

两式左右两边相减可以得到:

dp[i][j] = dp[i-1][j] + dp[i][j-p[i]] \\

动态规划 2:

再看第二个方法,转移方程为:

dp[i][j] = \sum_{k=0}^{\lfloor j/p[i] \rfloor}{dp[i-1][j-k \cdot p[i]]} \\

j = j - p[i] ,又可以得到:

dp[i][j-p[i]] = \sum_{k=1}^{\lfloor j/p[i] \rfloor}{dp[i-1][j-k \cdot p[i]]} \\

两式左右两边相减可以得到:

dp[i][j] = dp[i-1][j] + dp[i][j-p[i]] \\

最终形式:

所以,最终**两个方法消去求和之后,形式是一样的!**都是:

dp[i][j] = dp[i-1][j] + dp[i][j-p[i]] \\

时间复杂度 O(nm) ,空间复杂度 O(nm)

空间优化

注意到,上面转移方程每个时刻 i 其实只和 i-1 还有 i 时刻有关,所以可以把第一个维度消除掉。这样转移方程就变为了:

dp[j] = dp[j] + dp[j-p[i]] \\

但是需要特别注意的是,这里一共有三项,分别表示的是第 i 时刻、第 i-1 时刻、第 i 时刻。所以在两层循环遍历的时候,第一层循环必须是遍历硬币 i ,第二层才是遍历组成的面值 j ,这样才不会导致第 i-1 时刻的值被覆盖掉无法访问。

时间复杂度 O(nm) ,空间复杂度 O(n)

数学法

这个方法就只针对本题硬币种类比较少的情况了。

假设组成面值 n 需要 i25 分, a10 分, b5 分, c1 分,那么有:

n = 25i + 10a + 5b + c \\

这里 i 我们是需要枚举的,范围是 [0, \lfloor n/25 \rfloor] ,所以我们令 r = n - 25i,那么就得到了:

r = 10a + 5b + c \\

那么 a 的范围是 [0, \lfloor r/10 \rfloor] 。而 a 确定了之后, b 的范围就是 [0, \lfloor (r-10a)/5 \rfloor] 。而 a, b 都确定了之后, c 是唯一确定了的。所以最终的方案数就是:

\begin{aligned} \sum_{a=0}^{\lfloor r/10 \rfloor}{\sum_{b=0}^{\lfloor (r-10a)/5 \rfloor}{1}} &= \sum_{a=0}^{\lfloor r/10 \rfloor}{(\lfloor (r-10a)/5 \rfloor + 1)}\\\ &= \sum_{a=0}^{\lfloor r/10 \rfloor}{(\lfloor r/5 \rfloor -2a + 1)}\\\ &= (\lfloor r/10 \rfloor + 1)(\lfloor r/5 \rfloor + 1) - (\lfloor r/10 \rfloor + 1)\lfloor r/10 \rfloor \\\ & =(\lfloor r/10 \rfloor + 1)(\lfloor r/5 \rfloor - \lfloor r/10 \rfloor + 1) \end{aligned} \\

所以最终我们遍历 i \in [0, \lfloor n/25 \rfloor],然后令 r = n - 25i。接着令 x = \lfloor r/10 \rfloory = \lfloor r/5 \rfloor,最后对 (x+1)(y-x+1) 进行累加就行了:

\sum_{i=0}^{\lfloor n/25 \rfloor}{(x+1)(y-x+1)} \\

时间复杂度 O(n) ,空间复杂度 O(1)

代码

动态规划 1(c++)

        class Solution {
public:
    typedef long long ll;
    static const ll mod = 1e9 + 7;
    static const int N = 1000010;
    static const int M = 4;

    ll dp[M][N];
    int p[M] = {1, 5, 10, 25};

    int waysToChange(int n) {
        memset(dp, 0, sizeof dp);
        for (int i = 0; i < M; ++i) dp[i][0] = 1;
        for (int i = 0; i < M; ++i) {
            for (int j = 1; j <= n; ++j) {
                for (int k = 0; k <= i; ++k) {
                    if (j >= p[k]) {
                        (dp[i][j] += dp[k][j-p[k]]) %= mod;
                    }
                }
            }
        }
        return dp[M-1][n];
    }
};

      

动态规划 2(超时)(c++)

        class Solution {
public:
    typedef long long ll;
    static const ll mod = 1e9 + 7;
    static const int N = 1000010;
    static const int M = 4;

    ll dp[M][N];
    int p[M] = {1, 5, 10, 25};

    int waysToChange(int n) {
        memset(dp, 0, sizeof dp);
        for (int i = 0; i < M; ++i) dp[i][0] = 1;
        for (int i = 0; i <= n/p[0]; ++i) dp[0][i*p[0]] = 1;
        for (int i = 1; i < M; ++i) {
            for (int j = 1; j <= n; ++j) {
                for (int k = 0; k <= j/p[i]; ++k) {
                    (dp[i][j] += dp[i-1][j-k*p[i]]) %= mod;
                }
            }
        }
        return dp[M-1][n];
    }
};

      

转移方程优化(c++)

        class Solution {
public:
    typedef long long ll;
    static const ll mod = 1e9 + 7;
    static const int N = 1000010;
    static const int M = 4;

    ll dp[M][N];
    int p[M] = {1, 5, 10, 25};

    int waysToChange(int n) {
        memset(dp, 0, sizeof dp);
        for (int i = 0; i < M; ++i) dp[i][0] = 1;
        for (int i = 0; i <= n/p[0]; ++i) dp[0][i*p[0]] = 1;
        for (int i = 1; i < M; ++i) {
            for (int j = 1; j <= n; ++j) {
                dp[i][j] = dp[i-1][j];
                if (j >= p[i]) (dp[i][j] += dp[i][j-p[i]]) %= mod;
            }
        }
        return dp[M-1][n];
    }
};

      

空间优化(c++)

        class Solution {
public:
    typedef long long ll;
    static const ll mod = 1e9 + 7;
    static const int N = 1000010;
    static const int M = 4;

    ll dp[N];
    int p[M] = {1, 5, 10, 25};

    int waysToChange(int n) {
        memset(dp, 0, sizeof dp);
        dp[0] = 1;
        for (int j = 0; j < M; ++j) {
            for (int i = 1; i <= n; ++i) {
                if (i >= p[j]) {
                    (dp[i] += dp[i-p[j]]) %= mod;
                }
            }
        }
        return dp[n];
    }
};

      

数学法(c++)

        class Solution {
public:
    typedef long long ll;
    static const ll mod = 1e9 + 7;

    int waysToChange(int n) {
        ll res = 0;
        for (int i = 0; i <= n/25; ++i) {
            ll r = n - 25 * i;
            ll x = r / 10, y = r / 5;
            (res += (x + 1) * (y - x + 1)) %= mod;
        }
        return res;
    }
};

      

参考资料

[1]

LeetCode 面试题 08.11. 硬币: leetcode-cn.com/problem

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

算法码上来

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值