作为一个城市的应急救援队伍的负责人,你有一张特殊的全国地图。在地图上显示有多个分散的城市和一些连接城市的快速道路。每个城市的救援队数量和每一条连接两个城市的快速道路长度都标在地图上。当其他城市有紧急求助电话给你的时候,你的任务是带领你的救援队尽快赶往事发地,同时,一路上召集尽可能多的救援队。
输入格式:
输入第一行给出4个正整数N、M、S、D,其中N(2<=N<=500)是城市的个数,顺便假设城市的编号为0~(N-1);M是快速道路的条数;S是出发地的城市编号;D是目的地的城市编号。第二行给出N个正整数,其中第i个数是第i个城市的救援队的数目,数字间以空格分隔。随后的M行中,每行给出一条快速道路的信息,分别是:城市1、城市2、快速道路的长度,中间用空格分开,数字均为整数且不超过500。输入保证救援可行且最优解唯一。
输出格式:
第一行输出不同的最短路径的条数和能够召集的最多的救援队数量。第二行输出从S到D的路径中经过的城市编号。数字间以空格分隔,输出首尾不能有多余空格。
输入样例:4 5 0 3 20 30 40 10 0 1 1 1 3 2 0 3 3 0 2 2 2 3 2输出样例:
2 60
0 1 3
这道题有个注意的地方就是总共循环n次而不是n-1次
每次找到最优的节点时再更新连接它的节点的状态
#include<cstdio>
#include<algorithm>
using namespace std;
int MAX=1000;
int INF=1000000;
int d[1000]; //顶点到每个点的最短距离
int G[1000][1000]; //保存图
int pre[1000]; //保存每个点的前驱
int visit[1000]={0}; //记录是否被访问
int serve[1000]; //记录每个城市的救援队数量
int ser[1000]={0}; //记录每个城市最多的救援队
int num[1000]={0}; //记录最短路径条数
void Dijkstra(int s,int n)//s为起点,n为顶点
{
int i,j,u,MIN;
fill(d,d+n,INF);
d[s]=0;
for(i=0;i<n;i++)
pre[i]=i; //设置前驱为自己
ser[s]=serve[s];
num[s]=1;
for(i=0;i<n;i++){
u=-1;
MIN=INF;
for(j=0;j<n;j++){
if(!visit[j]&&d[j]<MIN){
u=j;
MIN=d[j];
}
}
if(u==-1)return;
visit[u]=1; //找到最优节点
for(j=0;j<n;j++){
if(!visit[j]&&G[u][j]!=INF){ //更新未访问的且连接它的节点状态
if(d[j]>d[u]+G[u][j]){ //如果通过这个节点,路径变短
d[j]=d[u]+G[u][j]; //更新路径
pre[j]=u; //设置前驱
num[j]=num[u]; //继承这个节点的路径数
ser[j]=ser[u]+serve[j];//继承这个节点的救援队数量+自身的救援队数量
}
else if(d[j]==d[u]+G[u][j]){//有两条路径长度一样的情况
num[j]+=num[u]; //相加
if(ser[j]<ser[u]+serve[j]){//如果现在这条路径的救援队更多
ser[j]=ser[u]+serve[j];//更新救援队
pre[j]=u; //更新前驱
}
}
}
}
}
}
void print(int x)
{
if(pre[x]!=x){
print(pre[x]);
printf(" %d",x);
}
else{
printf("%d",x);
return;
}
}
int main()
{
int n,m,S,D,i,a,b;
fill(G[0],G[0]+1000*1000,INF); //注意是G[0]而不是G,否则会有语法错误
scanf("%d%d%d%d",&n,&m,&S,&D);
for(i=0;i<n;i++)
{
scanf("%d",&serve[i]);
}
for(i=0;i<m;i++)
{
scanf("%d%d",&a,&b);
scanf("%d",&G[a][b]);
G[b][a]=G[a][b];
}
Dijkstra(S,n);
printf("%d %d\n",num[D],ser[D]);
print(D);
}