- 命题:同余方程组
{
x
≡
a
1
(
m
o
d
  
m
1
)
x
≡
a
2
(
m
o
d
  
m
2
)
\begin{cases} x\equiv a_1(mod\;m_1)\\ x\equiv a_2(mod\;m_2) \end{cases}
{x≡a1(modm1)x≡a2(modm2)
有解当且仅当 ( m 1 , m 2 ) ∣ ( a 1 − a 2 ) (m_1,m_2)|(a_1-a_2) (m1,m2)∣(a1−a2)。并证明若有解,该解模 ( [ m 1 , m 2 ] ) ([m_1, m_2]) ([m1,m2])是唯一的。
(选自《信息安全数学基础(第二版)第3章习题》)
方法一
本题可以分解为以下三个命题的证明:
- 必要性:该同余方程组有解 ⇒ ( m 1 , m 2 ) ∣ ( a 1 − a 2 ) \Rightarrow(m_1,m_2)|(a_1-a_2) ⇒(m1,m2)∣(a1−a2)。
- 充分性: ( m 1 , m 2 ) ∣ ( a 1 − a 2 ) ⇒ (m_1,m_2)|(a_1-a_2)\Rightarrow (m1,m2)∣(a1−a2)⇒ 该同余方程组有解。
- 若该同余方程组有解,则该解模 ( [ m 1 , m 2 ] ) ([m_1, m_2]) ([m1,m2])是唯一的。
证
明
:
(
1
)
已
知
原
同
余
方
程
组
有
解
,
那
么
∃
q
1
,
q
2
满
足
a
1
+
m
1
q
1
=
a
2
+
m
2
q
2
,
即
m
2
q
2
−
m
1
q
1
=
a
2
−
a
1
⇒
(
m
1
,
m
2
)
∣
(
a
1
−
a
2
)
,
必
要
性
成
立
。
(
2
)
因
为
(
m
1
,
m
2
)
∣
(
a
1
−
a
2
)
,
所
以
∃
k
,
s
,
t
,
满
足
a
1
−
a
2
=
k
s
m
1
+
k
t
m
2
。
取
x
0
=
a
1
−
k
s
m
1
=
a
2
+
k
t
m
2
,
代
入
原
同
余
方
程
组
验
证
成
立
,
所
以
x
0
即
为
该
同
余
方
程
组
的
解
,
充
分
性
成
立
。
(
3
)
对
于
该
同
余
方
程
组
的
任
意
解
x
1
,
x
2
,
都
有
x
1
≡
x
2
(
m
o
d
  
m
1
)
,
x
1
≡
x
2
(
m
o
d
  
m
2
)
,
所
以
有
x
1
≡
x
2
(
m
o
d
  
[
m
1
,
m
2
]
)
,
即
x
1
与
x
2
模
[
m
1
,
m
2
]
同
余
。
因
此
该
同
余
方
程
的
解
模
(
[
m
1
,
m
2
]
)
是
唯
一
的
。
证明:\\ (1)已知原同余方程组有解,那么\exist q_1, q_2满足a_1+m_1q_1=a_2+m_2q_2,\\ 即m_2q_2-m_1q_1=a_2-a_1\Rightarrow(m_1,m_2)|(a_1-a_2),必要性成立。\\ (2)因为(m_1,m_2)|(a_1-a_2),所以\exist k, s, t,满足a_1-a_2=ksm_1+ktm_2。\\ 取x_0=a_1-ksm_1=a_2+ktm_2,代入原同余方程组验证成立,\\ 所以x_0即为该同余方程组的解,充分性成立。\\ (3)对于该同余方程组的任意解x_1,x_2, 都有x_1\equiv x_2(mod\;m_1),x_1\equiv x_2(mod\;m_2),\\ 所以有x_1\equiv x_2(mod\;[m_1,m_2]),即x_1与x_2模[m_1,m_2]同余。\\ 因此该同余方程的解模([m_1,m_2])是唯一的。
证明:(1)已知原同余方程组有解,那么∃q1,q2满足a1+m1q1=a2+m2q2,即m2q2−m1q1=a2−a1⇒(m1,m2)∣(a1−a2),必要性成立。(2)因为(m1,m2)∣(a1−a2),所以∃k,s,t,满足a1−a2=ksm1+ktm2。取x0=a1−ksm1=a2+ktm2,代入原同余方程组验证成立,所以x0即为该同余方程组的解,充分性成立。(3)对于该同余方程组的任意解x1,x2,都有x1≡x2(modm1),x1≡x2(modm2),所以有x1≡x2(mod[m1,m2]),即x1与x2模[m1,m2]同余。因此该同余方程的解模([m1,m2])是唯一的。
方法二
我们先来看一个引理。
-
引理:二元一次不定方程 a x + b y = c ax+by=c ax+by=c有整数解的充要条件是 ( a , b ) ∣ c (a,b)|c (a,b)∣c。
证 明 : ( 1 ) 必 要 性 : 设 方 程 有 整 数 解 x 0 , y 0 , 则 有 a x 0 + b y 0 = c 。 因 为 ( a , b ) ∣ a , ( a , b ) ∣ b , 所 以 ( a , b ) ∣ ( a x 0 + b y 0 ) , 即 ( a , b ) ∣ c 。 ( 2 ) 充 分 性 : 设 ( a , b ) ∣ c , 则 c = k ( a , b ) , k ∈ Z 。 存 在 整 数 s , t , 使 得 a s + b t = ( a , b ) 。 令 x 0 = k s , y 0 = k t , 则 x 0 , y 0 即 为 方 程 的 解 。 证 毕 。 证明:\\ (1)必要性:设方程有整数解x_0,y_0,则有ax_0+by_0=c。\\ 因为(a,b)|a,(a,b)|b,所以(a,b)|(ax_0+by_0),即(a,b)|c。\\ (2)充分性:设(a,b)|c,则c=k(a,b),k\in \mathbb{Z}。\\ 存在整数s,t,使得as+bt=(a,b)。\\ 令x_0=ks,y_0=kt,则x_0,y_0即为方程的解。\\ 证毕。 证明:(1)必要性:设方程有整数解x0,y0,则有ax0+by0=c。因为(a,b)∣a,(a,b)∣b,所以(a,b)∣(ax0+by0),即(a,b)∣c。(2)充分性:设(a,b)∣c,则c=k(a,b),k∈Z。存在整数s,t,使得as+bt=(a,b)。令x0=ks,y0=kt,则x0,y0即为方程的解。证毕。 -
下面我们回到命题的证明:
因 为 x ≡ a 1 ( m o d    m 1 ) ⇔ ∃ q 1 ∈ Z , 使 得 x = a 1 + m 1 q 1 . x ≡ a 2 ( m o d    m 2 ) ⇔ ∃ q 2 ∈ Z , 使 得 x = a 2 + m 2 q 2 . 所 以 该 同 余 方 程 组 有 解 的 等 价 命 题 为 : 关 于 q 1 , q 2 的 二 元 一 次 不 定 方 程 a 1 + m 1 q 1 = a 2 + m 2 q 2 , 即 m 2 q 2 − m 1 q 1 = a 1 a 2 有 整 数 解 。 由 引 理 可 知 m 2 q 2 − m 1 q 1 = a 1 a 2 有 整 数 解 的 充 要 条 件 为 ( − m 1 , m 2 ) ∣ ( a 1 − a 2 ) , 即 ( m 1 , m 2 ) ∣ ( a 1 − a 2 ) 。 所 以 同 余 方 程 组 { x ≡ a 1 ( m o d    m 1 ) x ≡ a 2 ( m o d    m 2 ) 有 解 当 且 仅 当 ( m 1 , m 2 ) ∣ ( a 1 − a 2 ) 。 对 于 该 同 余 方 程 组 的 任 意 解 x 1 , x 2 , 都 有 x 1 ≡ x 2 ( m o d    m 1 ) , x 1 ≡ x 2 ( m o d    m 2 ) , 所 以 有 x 1 ≡ x 2 ( m o d    [ m 1 , m 2 ] ) , 即 x 1 与 x 2 模 [ m 1 , m 2 ] 同 余 。 因 此 该 同 余 方 程 的 解 模 ( [ m 1 , m 2 ] ) 是 唯 一 的 。 因为\\ x\equiv a_1(mod\;m_1)\Leftrightarrow\exists q_1\in\mathbb{Z},使得x=a_1+m_1q_1.\\ x\equiv a_2(mod\;m_2)\Leftrightarrow\exists q_2\in\mathbb{Z},使得x=a_2+m_2q_2.\\ 所以该同余方程组有解的等价命题为:\\ 关于q_1,q_2的二元一次不定方程a_1+m_1q_1=a_2+m_2q_2,即m_2q_2-m_1q_1=a_1a_2有整数解。\\ 由引理可知m_2q_2-m_1q_1=a_1a_2有整数解的充要条件为\\ (-m_1,m_2)|(a_1-a_2),即(m_1,m_2)|(a_1-a_2)。\\ 所以同余方程组\begin{cases} x\equiv a_1(mod\;m_1)\\ x\equiv a_2(mod\;m_2) \end{cases}有解当且仅当(m_1,m_2)|(a_1-a_2)。\\ 对于该同余方程组的任意解x_1,x_2, 都有x1\equiv x_2(mod\;m_1),x_1\equiv x_2(mod\;m_2),\\ 所以有x1\equiv x2(mod\;[m_1,m_2]),即x_1与x_2模[m_1,m_2]同余。\\ 因此该同余方程的解模([m_1,m_2])是唯一的。 因为x≡a1(modm1)⇔∃q1∈Z,使得x=a1+m1q1.x≡a2(modm2)⇔∃q2∈Z,使得x=a2+m2q2.所以该同余方程组有解的等价命题为:关于q1,q2的二元一次不定方程a1+m1q1=a2+m2q2,即m2q2−m1q1=a1a2有整数解。由引理可知m2q2−m1q1=a1a2有整数解的充要条件为(−m1,m2)∣(a1−a2),即(m1,m2)∣(a1−a2)。所以同余方程组{x≡a1(modm1)x≡a2(modm2)有解当且仅当(m1,m2)∣(a1−a2)。对于该同余方程组的任意解x1,x2,都有x1≡x2(modm1),x1≡x2(modm2),所以有x1≡x2(mod[m1,m2]),即x1与x2模[m1,m2]同余。因此该同余方程的解模([m1,m2])是唯一的。