同余方程组有解的充要条件

  • 命题:同余方程组 { x ≡ a 1 ( m o d    m 1 ) x ≡ a 2 ( m o d    m 2 ) \begin{cases} x\equiv a_1(mod\;m_1)\\ x\equiv a_2(mod\;m_2) \end{cases} {xa1(modm1)xa2(modm2)
    有解当且仅当 ( m 1 , m 2 ) ∣ ( a 1 − a 2 ) (m_1,m_2)|(a_1-a_2) (m1,m2)(a1a2)。并证明若有解,该解模 ( [ m 1 , m 2 ] ) ([m_1, m_2]) ([m1,m2])是唯一的。
    (选自《信息安全数学基础(第二版)第3章习题》)

方法一

本题可以分解为以下三个命题的证明:

  1. 必要性:该同余方程组有解 ⇒ ( m 1 , m 2 ) ∣ ( a 1 − a 2 ) \Rightarrow(m_1,m_2)|(a_1-a_2) (m1,m2)(a1a2)
  2. 充分性: ( m 1 , m 2 ) ∣ ( a 1 − a 2 ) ⇒ (m_1,m_2)|(a_1-a_2)\Rightarrow (m1,m2)(a1a2) 该同余方程组有解。
  3. 若该同余方程组有解,则该解模 ( [ m 1 , m 2 ] ) ([m_1, m_2]) ([m1,m2])是唯一的。

证 明 : ( 1 ) 已 知 原 同 余 方 程 组 有 解 , 那 么 ∃ q 1 , q 2 满 足 a 1 + m 1 q 1 = a 2 + m 2 q 2 , 即 m 2 q 2 − m 1 q 1 = a 2 − a 1 ⇒ ( m 1 , m 2 ) ∣ ( a 1 − a 2 ) , 必 要 性 成 立 。 ( 2 ) 因 为 ( m 1 , m 2 ) ∣ ( a 1 − a 2 ) , 所 以 ∃ k , s , t , 满 足 a 1 − a 2 = k s m 1 + k t m 2 。 取 x 0 = a 1 − k s m 1 = a 2 + k t m 2 , 代 入 原 同 余 方 程 组 验 证 成 立 , 所 以 x 0 即 为 该 同 余 方 程 组 的 解 , 充 分 性 成 立 。 ( 3 ) 对 于 该 同 余 方 程 组 的 任 意 解 x 1 , x 2 , 都 有 x 1 ≡ x 2 ( m o d    m 1 ) , x 1 ≡ x 2 ( m o d    m 2 ) , 所 以 有 x 1 ≡ x 2 ( m o d    [ m 1 , m 2 ] ) , 即 x 1 与 x 2 模 [ m 1 , m 2 ] 同 余 。 因 此 该 同 余 方 程 的 解 模 ( [ m 1 , m 2 ] ) 是 唯 一 的 。 证明:\\ (1)已知原同余方程组有解,那么\exist q_1, q_2满足a_1+m_1q_1=a_2+m_2q_2,\\ 即m_2q_2-m_1q_1=a_2-a_1\Rightarrow(m_1,m_2)|(a_1-a_2),必要性成立。\\ (2)因为(m_1,m_2)|(a_1-a_2),所以\exist k, s, t,满足a_1-a_2=ksm_1+ktm_2。\\ 取x_0=a_1-ksm_1=a_2+ktm_2,代入原同余方程组验证成立,\\ 所以x_0即为该同余方程组的解,充分性成立。\\ (3)对于该同余方程组的任意解x_1,x_2, 都有x_1\equiv x_2(mod\;m_1),x_1\equiv x_2(mod\;m_2),\\ 所以有x_1\equiv x_2(mod\;[m_1,m_2]),即x_1与x_2模[m_1,m_2]同余。\\ 因此该同余方程的解模([m_1,m_2])是唯一的。 1q1,q2a1+m1q1=a2+m2q2m2q2m1q1=a2a1(m1,m2)(a1a2)2(m1,m2)(a1a2)k,s,ta1a2=ksm1+ktm2x0=a1ksm1=a2+ktm2x03x1,x2x1x2(modm1),x1x2(modm2)x1x2(mod[m1,m2])x1x2[m1,m2]([m1,m2])

方法二

我们先来看一个引理。

  • 引理:二元一次不定方程 a x + b y = c ax+by=c ax+by=c有整数解的充要条件是 ( a , b ) ∣ c (a,b)|c (a,b)c
    证 明 : ( 1 ) 必 要 性 : 设 方 程 有 整 数 解 x 0 , y 0 , 则 有 a x 0 + b y 0 = c 。 因 为 ( a , b ) ∣ a , ( a , b ) ∣ b , 所 以 ( a , b ) ∣ ( a x 0 + b y 0 ) , 即 ( a , b ) ∣ c 。 ( 2 ) 充 分 性 : 设 ( a , b ) ∣ c , 则 c = k ( a , b ) , k ∈ Z 。 存 在 整 数 s , t , 使 得 a s + b t = ( a , b ) 。 令 x 0 = k s , y 0 = k t , 则 x 0 , y 0 即 为 方 程 的 解 。 证 毕 。 证明:\\ (1)必要性:设方程有整数解x_0,y_0,则有ax_0+by_0=c。\\ 因为(a,b)|a,(a,b)|b,所以(a,b)|(ax_0+by_0),即(a,b)|c。\\ (2)充分性:设(a,b)|c,则c=k(a,b),k\in \mathbb{Z}。\\ 存在整数s,t,使得as+bt=(a,b)。\\ 令x_0=ks,y_0=kt,则x_0,y_0即为方程的解。\\ 证毕。 1x0y0ax0+by0=c(a,b)a,(a,b)b(a,b)(ax0+by0)(a,b)c2(a,b)cc=k(a,b),kZs,t使as+bt=(a,b)x0=ks,y0=ktx0,y0

  • 下面我们回到命题的证明:
    因 为 x ≡ a 1 ( m o d    m 1 ) ⇔ ∃ q 1 ∈ Z , 使 得 x = a 1 + m 1 q 1 . x ≡ a 2 ( m o d    m 2 ) ⇔ ∃ q 2 ∈ Z , 使 得 x = a 2 + m 2 q 2 . 所 以 该 同 余 方 程 组 有 解 的 等 价 命 题 为 : 关 于 q 1 , q 2 的 二 元 一 次 不 定 方 程 a 1 + m 1 q 1 = a 2 + m 2 q 2 , 即 m 2 q 2 − m 1 q 1 = a 1 a 2 有 整 数 解 。 由 引 理 可 知 m 2 q 2 − m 1 q 1 = a 1 a 2 有 整 数 解 的 充 要 条 件 为 ( − m 1 , m 2 ) ∣ ( a 1 − a 2 ) , 即 ( m 1 , m 2 ) ∣ ( a 1 − a 2 ) 。 所 以 同 余 方 程 组 { x ≡ a 1 ( m o d    m 1 ) x ≡ a 2 ( m o d    m 2 ) 有 解 当 且 仅 当 ( m 1 , m 2 ) ∣ ( a 1 − a 2 ) 。 对 于 该 同 余 方 程 组 的 任 意 解 x 1 , x 2 , 都 有 x 1 ≡ x 2 ( m o d    m 1 ) , x 1 ≡ x 2 ( m o d    m 2 ) , 所 以 有 x 1 ≡ x 2 ( m o d    [ m 1 , m 2 ] ) , 即 x 1 与 x 2 模 [ m 1 , m 2 ] 同 余 。 因 此 该 同 余 方 程 的 解 模 ( [ m 1 , m 2 ] ) 是 唯 一 的 。 因为\\ x\equiv a_1(mod\;m_1)\Leftrightarrow\exists q_1\in\mathbb{Z},使得x=a_1+m_1q_1.\\ x\equiv a_2(mod\;m_2)\Leftrightarrow\exists q_2\in\mathbb{Z},使得x=a_2+m_2q_2.\\ 所以该同余方程组有解的等价命题为:\\ 关于q_1,q_2的二元一次不定方程a_1+m_1q_1=a_2+m_2q_2,即m_2q_2-m_1q_1=a_1a_2有整数解。\\ 由引理可知m_2q_2-m_1q_1=a_1a_2有整数解的充要条件为\\ (-m_1,m_2)|(a_1-a_2),即(m_1,m_2)|(a_1-a_2)。\\ 所以同余方程组\begin{cases} x\equiv a_1(mod\;m_1)\\ x\equiv a_2(mod\;m_2) \end{cases}有解当且仅当(m_1,m_2)|(a_1-a_2)。\\ 对于该同余方程组的任意解x_1,x_2, 都有x1\equiv x_2(mod\;m_1),x_1\equiv x_2(mod\;m_2),\\ 所以有x1\equiv x2(mod\;[m_1,m_2]),即x_1与x_2模[m_1,m_2]同余。\\ 因此该同余方程的解模([m_1,m_2])是唯一的。 xa1(modm1)q1Z,使x=a1+m1q1.xa2(modm2)q2Z,使x=a2+m2q2.q1,q2a1+m1q1=a2+m2q2m2q2m1q1=a1a2m2q2m1q1=a1a2(m1,m2)(a1a2)(m1,m2)(a1a2){xa1(modm1)xa2(modm2)(m1,m2)(a1a2)x1,x2x1x2(modm1),x1x2(modm2)x1x2(mod[m1,m2])x1x2[m1,m2]([m1,m2])

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值