数值分析(11):常微分方程的数值解法之Euler法

13 篇文章 ¥119.90 ¥299.90
本文介绍了常微分方程初值问题的存在唯一性定理及其充分条件,并详细阐述了Euler方法,包括显式Euler、隐式Euler和梯形方法。此外,讨论了隐式方程的迭代求解策略和预估-校正方法。同时,对显式和隐式单步方法进行了误差分析,探讨了整体截断误差和局部截断误差的概念及阶的定义。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 引言

我们通常遇到的一阶常微分方程初值问题,如下所示:

在这里插入图片描述

如何证明上面的微分方程存在解,且解唯一呢?则需要以下的存在唯一性定理:

在这里插入图片描述

上面定理中的Lipschitz条件,其定义如下:
在这里插入图片描述
这个定义很难验证,通常使用以下的充分条件来判断函数是否满足Lipschitz条件,即:
在这里插入图片描述

那么对于上面存在唯一性定理

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值