常微分方程的数值解法之Euler法 1. 引言 2. Euler方法 2.1 显式Euler方法 2.2 隐式Euler方法 2.3 梯形方法 3. 隐式方程的迭代求解 4. 预估-校正方法 5. 误差分析 5.1 显式单步方法误差分析 5.2 隐式单步方法误差分析 1. 引言 我们通常遇到的一阶常微分方程初值问题,如下所示: 如何证明上面的微分方程存在解,且解唯一呢?则需要以下的存在唯一性定理: 上面定理中的Lipschitz条件,其定义如下: 这个定义很难验证,通常使用以下的充分条件来判断函数是否满足Lipschitz条件,即: 那么对于上面存在唯一性定理