特殊形式素数无穷性的证明

引理:任一形如3k-1, 4k-1, 6k-1形式的正整数必有相同形式的素因数。

证 明 : ( 1 ) 奇 数 可 以 表 示 为 以 下 三 种 形 式 中 的 一 种 : 3 k − 1 , 3 k 和 3 k + 1 。 对 于 ∀ k 1 , k 2 ∈ Z , ( 3 k 1 + 1 ) ( 3 k 2 + 1 ) = 3 ( 3 k 1 k 2 + k 1 + k 2 ) + 1 , 3 k 1 ⋅ 3 k 2 = 3 ( 3 k 1 k 2 ) , 3 k 1 ( 3 k 2 + 1 ) = 3 ( 3 k 1 k 2 + k 1 ) , 即 形 如 3 k + 1 的 奇 数 的 乘 积 仍 形 如 3 k + 1 , 形 如 3 k 的 奇 数 的 乘 积 仍 形 如 3 k , 形 如 3 k + 1 与 3 k 的 奇 数 的 乘 积 也 形 如 3 k , 以 上 三 种 情 况 都 无 法 得 到 形 如 3 k − 1 的 奇 数 , 说 明 形 如 3 k − 1 的 奇 数 必 有 形 如 3 k − 1 的 素 因 子 。 ( 2 ) 奇 数 也 可 以 表 示 为 以 下 两 种 形 式 中 的 一 种 : 4 k − 1 , 和 4 k + 1 。 对 于 ∀ k 1 , k 2 ∈ Z , ( 4 k 1 + 1 ) ( 4 k 2 + 1 ) = 4 ( 4 k 1 k 2 + k 1 + k 2 ) + 1 , 即 形 如 4 k + 1 的 奇 数 的 乘 积 仍 形 如 4 k + 1 , 无 法 得 到 形 如 4 k − 1 的 奇 数 , 说 明 形 如 4 k − 1 的 奇 数 必 有 形 如 4 k − 1 的 素 因 子 。 ( 3 ) 奇 数 可 以 表 示 为 以 下 三 种 形 式 中 的 一 种 : 6 k − 1 , 6 k + 1 和 6 k + 3 。 对 于 ∀ k 1 , k 2 ∈ Z , ( 6 k 1 + 1 ) ( 6 k 2 + 1 ) = 6 ( 6 k 1 k 2 + k 1 + k 2 ) + 1 , ( 6 k 1 + 3 ) ( 6 k 2 + 3 ) = 6 [ 6 k 1 k 2 + 3 ( k 1 + k 2 ) ] + 3 , ( 6 k 1 + 1 ) ( 6 k 2 + 3 ) = 6 ( 6 k 1 k 2 + 3 k 1 + k 2 ) , 即 形 如 6 k + 1 的 奇 数 的 乘 积 仍 形 如 6 k + 1 , 形 如 6 k + 3 的 奇 数 的 乘 积 仍 形 如 6 k + 3 , 形 如 6 k + 1 与 6 k + 3 的 奇 数 的 乘 积 也 形 如 6 k + 3 , 以 上 三 种 情 况 都 无 法 得 到 形 如 6 k − 1 的 奇 数 , 说 明 形 如 6 k − 1 的 奇 数 必 有 形 如 6 k − 1 的 素 因 子 。 证明:\\ (1)奇数可以表示为以下三种形式中的一种:3k-1,3k和3k+1。\\ 对于\forall k_1,k_2\in\mathbb{Z},(3k_1+1)(3k_2+1)=3(3k_1k_2+k_1+k_2)+1,\\ 3k_1·3k_2=3(3k_1k_2),3k_1(3k_2+1)=3(3k_1k_2+k_1),\\ 即形如3k+1的奇数的乘积仍形如3k+1,形如3k的奇数的乘积仍形如3k,\\形如3k+1与3k的奇数的乘积也形如3k,以上三种情况都无法得到形如3k-1的奇数,\\ 说明形如3k-1的奇数必有形如3k-1的素因子。\\ (2)奇数也可以表示为以下两种形式中的一种:4k-1,和4k+1。\\ 对于\forall k_1,k_2\in\mathbb{Z},(4k_1+1)(4k_2+1)=4(4k_1k_2+k_1+k_2)+1,\\ 即形如4k+1的奇数的乘积仍形如4k+1,无法得到形如4k-1的奇数,\\ 说明形如4k-1的奇数必有形如4k-1的素因子。\\ (3)奇数可以表示为以下三种形式中的一种:6k-1,6k+1和6k+3。\\ 对于\forall k_1,k_2\in\mathbb{Z},(6k_1+1)(6k_2+1)=6(6k_1k_2+k_1+k_2)+1,\\ (6k_1+3)(6k_2+3)=6[6k_1k_2+3(k_1+k_2)]+3,\\ (6k_1+1)(6k_2+3)=6(6k_1k_2+3k_1+k_2),\\ 即形如6k+1的奇数的乘积仍形如6k+1,形如6k+3的奇数的乘积仍形如6k+3,\\形如6k+1与6k+3的奇数的乘积也形如6k+3,以上三种情况都无法得到形如\\6k-1的奇数,说明形如6k-1的奇数必有形如6k-1的素因子。 13k13k3k+1k1,k2Z(3k1+1)(3k2+1)=3(3k1k2+k1+k2)+13k13k2=3(3k1k2)3k1(3k2+1)=3(3k1k2+k1)3k+13k+13k3k3k+13k3k3k13k13k124k14k+1k1,k2Z(4k1+1)(4k2+1)=4(4k1k2+k1+k2)+14k+14k+14k14k14k136k16k+16k+3k1,k2Z(6k1+1)(6k2+1)=6(6k1k2+k1+k2)+1(6k1+3)(6k2+3)=6[6k1k2+3(k1+k2)]+3(6k1+1)(6k2+3)=6(6k1k2+3k1+k2)6k+16k+16k+36k+36k+16k+36k+36k16k16k1
 

命题:形如4k+3的素数有无穷多个。

有 引 理 可 知 形 如 4 k − 1 ( 即 4 k + 3 ) 的 合 数 必 有 相 同 形 式 的 素 因 子 。 假 设 形 如 4 k − 1 的 素 数 只 有 有 限 个 , 分 别 为 p 1 , p 2 , . . . , p n , 令 N = 4 p 1 p 2 . . . p n − 1 , 则 N 一 定 为 合 数 , 且 具 有 形 如 4 k − 1 的 素 因 子 ( 记 为 p j ) , 则 p j 必 为 p 1 , p 2 , . . . , p n 中 的 一 个 。 所 以 p j ∣ ( p 1 p 2 . . . p n ) , p j ∣ N ⇒ p j ∣ − 1 , 矛 盾 。 所 以 形 如 4 k − 1 ( 即 4 k + 3 ) 的 素 数 有 无 穷 多 个 。 有引理可知形如4k-1(即4k+3)的合数必有相同形式的素因子。\\ 假设形如4k-1的素数只有有限个,分别为p_1,p_2,...,p_n,\\ 令N=4p_1p_2...p_n-1,则N一定为合数,且具有形如4k-1的素因子(记为p_j),\\ 则p_j必为p_1,p_2,...,p_n中的一个。\\ 所以p_j|(p_1p_2...p_n), p_j|N\Rightarrow p_j|-1,矛盾。\\ 所以形如4k-1(即4k+3)的素数有无穷多个。 4k14k+34k1p1,p2,...,pnN=4p1p2...pn1N4k1pjpjp1,p2,...,pnpj(p1p2...pn),pjNpj14k14k+3
 

命题:形如6k+5的素数有无穷多个。

有 引 理 可 知 形 如 6 k − 1 ( 即 6 k + 5 ) 的 合 数 必 有 相 同 形 式 的 素 因 子 。 假 设 形 如 6 k − 1 的 素 数 只 有 有 限 个 , 分 别 为 p 1 , p 2 , . . . , p n , 令 N = 6 p 1 p 2 . . . p n − 1 , 则 N 一 定 为 合 数 , 且 具 有 形 如 4 k − 1 的 素 因 子 ( 记 为 p j ) , 则 p j 必 为 p 1 , p 2 , . . . , p n 中 的 一 个 。 所 以 p j ∣ ( p 1 p 2 . . . p n ) , p j ∣ N ⇒ p j ∣ − 1 , 矛 盾 。 所 以 形 如 6 k − 1 ( 即 6 k + 5 ) 的 素 数 有 无 穷 多 个 。 有引理可知形如6k-1(即6k+5)的合数必有相同形式的素因子。\\ 假设形如6k-1的素数只有有限个,分别为p_1,p_2,...,p_n,\\ 令N=6p_1p_2...p_n-1,则N一定为合数,且具有形如4k-1的素因子(记为p_j),\\ 则p_j必为p_1,p_2,...,p_n中的一个。\\ 所以p_j|(p_1p_2...p_n), p_j|N\Rightarrow p_j|-1,矛盾。\\ 所以形如6k-1(即6k+5)的素数有无穷多个。 6k16k+56k1p1,p2,...,pnN=6p1p2...pn1N4k1pjpjp1,p2,...,pnpj(p1p2...pn),pjNpj16k16k+5

  • 8
    点赞
  • 23
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值