素数的形成与无穷素数的证明

素数是一种很有意思的数,原因在于他只有1与本身两个因数,那么素数的个数是否是无穷个是一个有趣的问题。

素数的个数为什么是无穷个,假设素数是有穷个,那么有穷个素数的乘积加1,也就是x=p0*p1*。。。pn+1,如果x是个素数,那么也就意味着由已知的素数还可以再形成素数,那么如果它不是素数也就是说x还有除了现在素数之外的,还有别的素数因子,这样也将素数的范围进行的扩展了,产生了新的素数,所以说如果是假设素数个数是固定的,总能由这些素数产生新的素数,因此素数的个数也就是无穷的。

素数的形成问题,素数的形成可以通过跟上述证明过程类似的过程得到。先是由2,然后不断的调用上述式子,然后找到新的素数,找到新的素数后扩展到素数的结合当中。当时这样素数的形成过程不是按照从小到大的顺序找到的,不知道会不会有别的用处。

素数的分类:除了2这个特殊的偶数之外,其余的素数都是奇数,那么将其余素数进行分类,就可以分为两类:模4余1的数和模4余3的数。(不可能出现模4余2和模4余4的吧)那么这两类是否无穷的,证明这两类数是无穷的。模4余3的无穷性:那么我们只考虑模4余3的数,对于任意的模4余3的数,假设有穷个模4余3的数相乘,得到的数加3,那么就会得到一个新的模4余3的数,新得到的数如果是素数肯定没问题,如果是合数,那么必然会有一个模4余3的因子,否则不可能等于前面的乘积加3。而且这个素数因子还不会是原来已有的因子之一,否则这个因子必然整除3.这个是不可能的,所以模4余3的素数个数也是无穷的。但是模4余1的素数虽然是无穷的,但是不能采用此种方法证明,不能证明的原因就在于模4余1的好多素数可以由模4余3的数生成,这样就麻烦了好多,不具备跟上述相同的性质。不能总是扩展已有的模4余1的数的范围。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值