AudioSet音频数据集下载

AudioSet 是谷歌于 2017 年发布的一个大规模的标注音频事件数据集,具有以下特点和信息:

数据构成

  • 音频片段数量:包含 2,084,320 个人工标注的 10 秒声音片段,这些片段均来源于 YouTube 视频13.
  • 音频事件类别:拥有 632 个音频事件类的扩展本体,其事件类别以层次结构组织,最大深度为 6 级,涵盖了人类和动物的各种声音、乐器和流派以及常见的日常环境声音等,例如鸟叫、汽车行驶声、乐器演奏声等3.

标注信息

  • 每个音频片段都附带了清晰准确的标签,标注信息以 JSON 格式发布,其中包括音频的 ID、显示名称、描述、示例音频的 URL、子类别以及限制条件等详细内容,方便研究人员进行分类和分类算法的训练2.

数据收集与整理

  • 谷歌通过人工标注员来验证 YouTube 视频片段中声音的存在性,从而收集数据。在提名标注片段时,依靠 YouTube 的元数据和基于内容的搜索来筛选合适的视频片段.

下载数据集索引

进入AudioSet

可以看见有三种数据集: 

 

label 的索引

进入这里
https://github.com/audioset/ontology
打开ontology.json文件,这里有label的编码和对应的实际意义。

 

 

AudioSet音频数据的下载:

进入这里:agkphysics/AudioSet at mainicon-default.png?t=O83Ahttps://huggingface.co/datasets/agkphysics/AudioSet/tree/main/data

### AudioSet 数据集介绍 AudioSet 是一个大规模的音频事件数据集,包含了超过200万个带有标注的10秒音频片段[^1]。这些音频片段来源于YouTube视频,并被人工标注了多个类别标签。该数据集涵盖了各种各样的声音场景和事件,如交通工具的声音、动物叫声、乐器演奏等。 #### 主要特点 - **多标签分类**:每个音频剪辑可以拥有不止一个标签。 - **广泛覆盖**:涉及多种类型的自然和社会环境音效。 - **高质量标注**:虽然部分标签可能存在噪声,但总体上保持较高的准确性。 - **公开资源**:不仅提供原始音频文件链接,还有详细的元数据描述以及预处理后的特征向量。 为了方便研究人员快速入门并利用此数据集开展工作,官方还提供了启动代码(Starter Code),可用于初步实验和基线模型训练[^3]。这段代码同样适用于YouTube8M项目,在一定程度上简化了开发流程。 ### 使用方法概述 对于希望使用AudioSet进行研究或应用开发的人来说,以下是几个重要的方面: #### 获取数据 可以从Google提供的官方网站获取完整的数据集及其子集版本;另外也有国内镜像站点可供访问。需要注意的是由于版权原因,实际音频内容并不直接存储于数据库内而是指向对应的在线媒体位置。 #### 准备环境 建议先安装必要的依赖库比如TensorFlow或其他支持框架来加载和解析CSV格式的元数据表单。接着按照给定路径下载所需音频样本至本地磁盘空间中。 ```bash pip install tensorflow pandas librosa youtube-dl ``` #### 加载与探索 借助Pandas读取CSV文档从而获得结构化的信息表格,之后运用Librosa提取声学特性参数用于后续建模分析任务之前的数据准备工作。 ```python import pandas as pd from pathlib import Path # Load metadata CSV file into DataFrame metadata_path = 'path/to/balanced_train_segments.csv' df = pd.read_csv(metadata_path, skiprows=3) print(df.head()) ``` #### 训练模型 采用官方发布的starter code作为起点,调整超参数设置以适应特定应用场景需求。例如针对二分类问题修改损失函数定义或是引入正则项防止过拟合现象发生。 ```python def create_model(): model = tf.keras.Sequential([ # Define layers here... ]) optimizer = tf.optimizers.Adam() loss_fn = tf.losses.BinaryCrossentropy(from_logits=True) model.compile(optimizer=optimizer, loss=loss_fn, metrics=['accuracy']) return model ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值