梅森素数与Miller—Rabin素数测试方法

梅森素数的第二种测试方法:Miller—Rabin素性测试


Fermat小定理

著名的费马小定理为素数判定提供了一个有力的工具.

费马小定理:如果p是一个素数,(0<a<p),


Fermat素数测试

1819年有人发现了Fermat小定理逆命题的第一个反例:虽然2的340次方除以341余1,但341=11*31。后来,人们又发现了561, 645, 1105等数都表明a=2时Fermat小定理的逆命题不成立。人们把所有能整除2^(n-1)-1的合数n叫做伪素数(pseudoprime)。

不满足的n一定不是素数;如果满足的话则多半是素数。这样,一个比试除法效率更高的素性判断方法出现了:制作一张伪素数表,记录某个范围内的所有伪素数,那么所有满足且不在伪素数表中的n就是素数。之所以这种方法更快,是因为我们可以使用二分法快速计算的值(快速幂)。

然而不借助伪素数表的时候,算法出错的概率太高,需要改进.

我们刚才只考虑了a=2的情况。一个合数可能在a=2时通过了测试,但a=3时的计算结果却排除了素数的可能。于是,人们扩展了伪素数的定义,称满足a^(n-1) mod n = 1的合数n叫做以a为底的伪素数(pseudoprime to base a)

随机选择若干个小于待测数的正整数作为底数a进行若干次测试,只要有一次没有通过测试就立即把这个数扔回合数的世界。这就是Fermat素性测试

费马小定理毕竟只是素数判定的一个必要条件.满足费马小定理条件的整数n未必全是素数.有些合数也满足费马小定理的条件.这些合数被称作Carmichael,3Carmichael数是561,1105,1729. Carmichael数是非常少的.1~100000000范围内的整数中,只有255Carmichael.

***费马小定理的前提是a和n互质。当n本身就是素数的时候如果a<n那么a和n始终互素;但n不是素数时a和n不互素的话不能用费马小定理。也就是说,Carmichael数需要排除a和n不互素的情况.

利用下面的二次探测定理可以对上面的素数判定算法作进一步改进,以避免将Carmichael数当作素数.

Miller_Rabin素数测试算法

二次探测定理优化

 Miller和Rabin两个人的工作让Fermat素性测试迈出了革命性的一步,建立了Miller-Rabin素性测试算法。新的测试基于下面的定理:

如果p是素数,x是小于p的正整数,且,那么要么x=1,要么x=p-1。

这是显然的,因为相当于p能整除,也即p能整除(x+1)(x-1)。

由于p是素数,那么只可能是x-1能被p整除(此时x=1) 或 x+1能被p整除(此时x=p-1)。


(根据同余式的相关定理可得到上面的定理对下述表达的应用,下述为二次探测定理的逆应用)


我们下面来演示一下上面的定理如何应用在Fermat素性测试上。前面说过341可以通过以2为底的Fermat测试,因为2^340 mod 341=1。如果341真是素数的话,那么2^170mod 341只可能是1或340;当算得2^170 mod 341确实等于1时,我们可以继续查看2^85除以341的结果。我们发现,2^85 mod 341=32,这一结果摘掉了341头上的素数皇冠

这就是Miller-Rabin素性测试的方法。不断地提取指数n-1中的因子2,把n-1表示成(其中d是一个奇数)。那么我们需要计算的东西就变成了除以n的余数。于是,要么等于1,要么等于n-1。如果等于1,定理继续适用于,这样不断开方开下去,直到对于某个i满足或者最后指数中的2用完了得到的这样,Fermat小定理加强为如下形式:


尽可能提取因子2,把n-1表示成,如果n是一个素数,那么或者,或者存在某个i使得 ( 0<=i<r ) (注意i可以等于0,这就把的情况统一到后面去了)

例题 梅森素数(nefu 120)

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<time.h>
#define times 12
using namespace std;
long long random(long long n)
{
    return (long long)((double)rand()/RAND_MAX*n+0.5);
}
long long multi(long long a,long long b,long long m)///快速积
{
    long long ans=0;
    while(b)
    {
        if(b&1)
        {
            ans=(ans+a)%m;
            b--;
        }
        b>>=1;
        a=(a<<1)%m;
    }
    return ans;
}
long long quick_mod(long long a,long long b,long long m)///在快速幂套用快速积
{
    long long ans=1;
    while(b)
    {
        if(b&1)
        {
            ans=multi(ans,a,m);
            b--;
        }
        b>>=1;
        a=multi(a,a,m);
    }
    return ans;
}
bool witness(long long a,long long n)
{
    long long m=n-1;///a刚开始的指数
    int j=0;
    while(m&1==0)///如果m为偶数,将m分解成一个奇数乘以2的多少次幂的形式
    {
        j++;///j记录了2的指数
        m>>=1;
    }
    long long x=quick_mod(a,m,n);
    if(x==1||x==n-1)///通过了fermat素性测试
        return false;
    while(j--)///从后往前推,直到有符合的条件为止
    {
        x=x*x%m;
        if(x==n-1)
            return false;
    }
    return true;
}
bool miller_rabin(long long n)
{
    if(n<2) return false;
    if(n==2) return true;
    if(n&1==0) return false;
    for(int i=1;i<=times;i++)
    {
        long long a=random(n-2)+1;
        if(witness(a,n))
            return false;
    }
    return true;
}
int main()
{
    int t,p;
    long long n;
    cin>>t;
    while(t--)
    {
         scanf("%d",&p);
        n=((long long)1<<p)-1;
        if(miller_rabin(n))
            cout<<"yes"<<endl;
        else
            cout<<"no"<<endl;
    }
    return 0;
}


  • 3
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值