一、
- 什么是Lucene?
Lucene是apache下的一个开源的全文检索引擎工具包。它为软件开发人员提供一个简单易用的工具包(类库),以方便的在目标系统中实现全文检索的功能。
注意:
Lucene和搜索引擎是不同的,Lucene是一套用java或其它语言写的全文检索的工具包。它为应用程序提供了很多个api接口去调用,可以简单理解为是一套实现全文检索的类库。搜索引擎是一个全文检索系统,它是一个单独运行的软件系统
2.全文检索定义
全文检索首先将要查询的目标文档中的词提取出来,组成索引,通过查询索引达到搜索目标文档的目的。这种先建立索引,再对索引进行搜索的过程就叫全文检索(Full-text Search)。
二、
- Lucene实现全文检索的流程
全文检索的流程分为两大部分:索引流程、搜索流程。
- 索引流程:即采集数据à构建文档对象à分析文档(分词)à创建索引。
- 搜索流程:即用户通过搜索界面à创建查询à执行搜索,搜索器从索引库搜索à渲染搜索结果。
2、Lucene的下载
Lucene是开发全文检索功能的工具包,使用时从官方网站下载,并解压。
官方网站:http://lucene.apache.org/
下载地址:http://archive.apache.org/dist/lucene/java/
下载版本:4.10.3(建议使用)
JDK要求:1.7以上(从版本4.8开始,不支持1.7以下)
3、索引流程
对文档索引的过程,就是将用户要搜索的文档内容进行索引,然后把索引存储在索引库(index)中。
4、
三、
1、入门程序
第一步:创建java工程
第二步:添加jar包
入门程序只需要添加以下jar包:
- mysql5.1驱动包:mysql-connector-java-5.1.7-bin.jar
- 核心包:lucene-core-4.10.3.jar
- 分析器通用包:lucene-analyzers-common-4.10.3.jar
- 查询解析器包:lucene-queryparser-4.10.3.jar
- junit包:junit-4.9.jar
第三步:代码实现
创建与数据库相对应的po类
public class Book {
// 图书ID
private Integer id;
// 图书名称
private String name;
// 图书价格
private Float price;
// 图书图片
private String pic;
// 图书描述
private String description;
}
创建dao层
public interface BookDao {
// 图书查询
public List<Book> queryBookList() throws Exception;
}
public class BookDaoImpl implements BookDao {
@Override
public List<Book> queryBookList() throws Exception {
// 数据库链接
Connection connection = null;
// 预编译statement
PreparedStatement preparedStatement = null;
// 结果集
ResultSet resultSet = null;
// 图书列表
List<Book> list = new ArrayList<Book>();
try {
// 加载数据库驱动
Class.forName("com.mysql.jdbc.Driver");
// 连接数据库
connection = DriverManager.getConnection(
"jdbc:mysql://localhost:3306/solr", "root", "root");
// SQL语句
String sql = "SELECT * FROM book";
// 创建preparedStatement
preparedStatement = connection.prepareStatement(sql);
// 获取结果集
resultSet = preparedStatement.executeQuery();
// 结果集解析
while (resultSet.next()) {
Book book = new Book();
book.setId(resultSet.getInt("id"));
book.setName(resultSet.getString("name"));
book.setPrice(resultSet.getFloat("price"));
book.setPic(resultSet.getString("pic"));
book.setDescription(resultSet.getString("description"));
list.add(book);
}
} catch (Exception e) {
e.printStackTrace();
}
return list;
}
}
四、
1、索引文件的逻辑结构
- 文档域:
对非结构化的数据统一格式为document文档格式,一个文档有多个field域,不同的文档其field的个数可以不同,建议相同类型的文档包括相同的field。
- 索引域:
用于搜索,搜索程序将从索引域中搜索一个一个词,根据词找到对应的文档。
将Document中的Field的内容进行分词,将分好的词创建索引,索引=Field域名:词
- 倒排索引表
传统方法是先找到文件,如何在文件中找内容,在文件内容中匹配搜索关键字,这种方法是顺序扫描方法,数据量大就搜索慢。
倒排索引结构是根据内容(词语)找文档,倒排索引结构也叫反向索引结构,包括索引和文档两部分,索引即词汇表,它是在索引中匹配搜索关键字,由于索引内容量有限并且采用固定优化算法搜索速度很快,找到了索引中的词汇,词汇与文档关联,从而最终找到了文档。
2、创建索引
创建索引的流程
IndexWriter是索引过程的核心组件,通过IndexWriter可以创建新索引、更新索引、删除索引操作。IndexWriter需要通过Directory对索引进行存储操作。
Directory描述了索引的存储位置,底层封装了I/O操作,负责对索引进行存储。它是一个抽象类,它的子类常用的包括FSDirectory(在文件系统存储索引)、RAMDirectory(在内存存储索引)。
创建索引的代码实现:
@Test
public void createIndex() throws Exception {
// 采集数据
BookDao dao = new BookDaoImpl();
List<Book> list = dao.queryBooks();
// 将采集到的数据封装到Document对象中
List<Document> docList = new ArrayList<>();
Document document;
for (Book book : list) {
document = new Document();
// store:如果是yes,则说明存储到文档域中
// 图书ID
Field id = new TextField("id", book.getId().toString(), Store.YES);
// 图书名称
Field name = new TextField("name", book.getName(), Store.YES);
// 图书价格
Field price = new TextField("price", book.getPrice().toString(),
Store.YES);
// 图书图片地址
Field pic = new TextField("pic", book.getPic(), Store.YES);
// 图书描述
Field description = new TextField("description",
book.getDescription(), Store.YES);
// 将field域设置到Document对象中
document.add(id);
document.add(name);
document.add(price);
document.add(pic);
document.add(description);
docList.add(document);
}
// 创建分词器,标准分词器
Analyzer analyzer = new StandardAnalyzer();
// 创建IndexWriter
IndexWriterConfig cfg = new IndexWriterConfig(Version.LUCENE_4_10_3,
analyzer);
// 指定索引库的地址
File indexFile = new File("E:\\11-index\\hm19\\");
Directory directory = FSDirectory.open(indexFile);
IndexWriter writer = new IndexWriter(directory, cfg);
// 通过IndexWriter对象将Document写入到索引库中
for (Document doc : docList) {
writer.addDocument(doc);
}
// 关闭writer
writer.close();
}
- 分词
Lucene中分词主要分为两个步骤:分词、过滤
分词:将field域中的内容一个个的分词。
过滤:将分好的词进行过滤,比如去掉标点符号、大写转小写、词的型还原(复数转单数、过去式转成现在式)、停用词过滤等,
停用词:单独应用没有特殊意义的词。比如的、啊、等,英文中的this is a the等等。
例如:要分词的内容是 "Lucene is a Java full-text search engine."
分词
Lucene
is
a
Java
Full
-
text
search
engine
.
过滤
去掉标点符号
Lucene
is
a
Java
Full
text
search
engine
去掉停用词
Lucene
Java
Full
text
search
engine
大写转小写
lucene
java
full
text
search
engine
如下图是语汇单元的生成过程:
从一个Reader字符流开始,创建一个基于Reader的Tokenizer分词器,经过三个TokenFilter生成语汇单元Token。
同一个域中相同的语汇单元(Token)对应同一个Term(词),它记录了语汇单元的内容及所在域的域名等,还包括来该token出现的频率及位置。
- 不同的域中拆分出来的相同的单词对应不同的term。
- 相同的域中拆分出来的相同的单词对应相同的term。
- 使用luke工具查看索引以及相关的介绍
双击lukeall-4.10.3.jar,打开