拦截导弹
数据范围
雷达给出的高度数据是不大于 30000 的正整数,导弹数不超过 1000。
输入样例:
389 207 155 300 299 170 158 65
输出样例:
6
2
解法:反链定理,即 求所需最少个非上升子序列的数目 == 求最长上升子序列
#include <iostream>
using namespace std;
const int N=1010;
int n,a[N],f[N];
int main()
{
while(cin>>a[n]) n++; //此题读入较为特殊 可用 stringstream
int res=0;
for(int i=0;i<n;i++) //先输出最多能拦截的导弹数(最长非上升子序列)
{
f[i]=1;
for(int j=0;j<i;j++)
if(a[i]<=a[j])
f[i]=max(f[i],f[j]+1);
res=max(res,f[i]);
}
cout<<res<<endl;
res=0;
for(int i=0;i<n;i++){ //使用最长上升子序列的贪心求法(可用二分优化)
int k=0;
while(k<res&&a[k]<a[i]) k++; //此处做法等同于另开一个数组存储最长上升子序列
a[k]=a[i];
if(k==res) res++;
}
cout<<res<<endl;
return 0;
}
导弹防御系统
数据范围
1≤n≤50
输入样例:
5
3 5 2 4 1
0
输出样例:
2
样例解释
对于给出样例,最少需要两套防御系统。
一套击落高度为 3,4 的导弹,另一套击落高度为 5,2,1 的导弹。
解法:此题为拦截导弹的升级版,可用 dfs 分别将每个导弹的高度放入非上升/非下降子序列进行判断
#include <iostream>
using namespace std;
const int N=55;
int n,a[N],up[N],down[N],ans; // up 和 down 数组不表示上升/下降序列,而是指炮台的种类
void dfs(int u,int su,int sd) // u 表示存导弹高度的数组下标,su 表示所需上升炮台的数目,sd表示所需下降炮台的数目
{
if(su+sd>=ans) return;
//此处优化极为重要,因为 dfs 会很快搜到一组解,从而缩小 ans 的值,实现大量剪枝
if(u==n){
ans=su+sd; //一旦搜到一组解就更新 ans
return;
}
int k=0; //放入非上升子序列
while(k<su&&up[k]>=a[u]) k++;
int t=up[k];
up[k]=a[u];
if(k<su) dfs(u+1,su,sd);//如果不需要添加炮台
else dfs(u+1,su+1,sd);//如果需要添加炮台
up[k]=t;//记得要还原
k=0; //放入非下降子序列
while(k<sd&&down[k]<=a[u]) k++;
t=down[k];
down[k]=a[u];
if(k<sd) dfs(u+1,su,sd);
else dfs(u+1,su,sd+1);
down[k]=t;
}
int main()
{
while(cin>>n,n)
{
ans=n; //ans要初始化为 n
for(int i=0;i<n;i++) cin>>a[i];
dfs(0,0,0);
cout<<ans<<endl;
}
return 0;
}
最长公共上升子序列
数据范围
1≤N≤3000,序列中的数字均不超过 231−1。
输入样例:
4
2 2 1 3
2 1 2 3
输出样例:
2
解法:此题为 最长上升子序列 与 最长公共子序列 的结合
优化版(O(n^2)):
#include <iostream>
using namespace std;
const int N=3010;
int a[N],b[N],n,f[N][N]; // f[i, j] 表示 a 数组考虑到第 i 个,且以 b[j] 结尾的最长公共上升子序列
int main()
{
cin>>n;
for(int i=1;i<=n;i++) cin>>a[i];
for(int i=1;i<=n;i++) cin>>b[i];
for(int i=1;i<=n;i++){
int maxv=1; // maxv 用来存储 f[i][k](0<=k<=j-1)在 b[k]<b[j] 时的最大值
for(int j=1;j<=n;j++)
{
//不考虑 a[i] 的情况
f[i][j]=f[i-1][j]; // f[i, j] 的状态转移分为 考虑 a[i] 和 不考虑 a[i]
//考虑 a[i] 的情况
if(a[i]==b[j]) f[i][j]=max(f[i][j],maxv);
else if(a[i]>b[j]) maxv=max(maxv,f[i][j]+1);
//因为是公共上升序列,所以 maxv 用来存储 a[i]>b[j] 时候的 f[i][j] 来更新相等时的 f[i][j]
}
}
int res=0;
for(int i=1;i<=n;i++) res=max(res,f[n][i]);
cout<<res<<endl;
return 0;
}
*非优化代码(O(n^3)):
#include <iostream>
using namespace std;
const int N=3010;
int a[N],b[N];
int n,f[N][N];
int main()
{
cin>>n;
for(int i=1;i<=n;i++) cin>>a[i];
for(int i=1;i<=n;i++) cin>>b[i];
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
{
f[i][j]=f[i-1][j];
if(a[i]==b[j])
{
f[i][j]=max(f[i][j],1);
for(int k=1;k<j;k++)
{
if(b[k]<b[j])
f[i][j]=max(f[i][k]+1,f[i][j]);
}
}
}
int res=0;
for(int i=1;i<=n;i++) res=max(res,f[n][i]);
cout<<res<<endl;
return 0;
}