能被整除的数
给定一个整数 n 和 m 个不同的质数 p1,p2,…,pm。
请你求出 1∼n 中能被 p1,p2,…,pm 中的至少一个数整除的整数有多少个。
输入格式
第一行包含整数 n 和 m。
第二行包含 m 个质数。
输出格式
输出一个整数,表示满足条件的整数的个数。
数据范围
1≤m≤16,
1≤n,pi≤10^9
输入样例:
10 2
2 3
输出样例:
7
解法:容斥原理+状态压缩
记 | Si | 为 1~n 中能被第 i 个质数整除的集合,则:
res = | S1∪S2∪S3∪…∪Sm |
= (| S1 | + | S2 | + | S3 | + … + | Sm |) - (| S1 ∩ S2 | + | S1 ∩ S3 | + | S2 ∩ S3 | +…+ | Sm-1 ∩ Sm |) + (…) - (…) …
规律:包含奇数个集合的符号为 + ,包含偶数个集合的符号为 -
#include <iostream>
using namespace std;
const int N=20;
typedef long long LL;
int p[N];
int m,n;
int main()
{
cin>>n>>m;
for(int i=0;i<m;i++) cin>>p[i];
int res=0;
for(int i=1;i<1<<m;i++) //枚举 i 的所有状态 ,1表示选某个质数,0表示不选
{
int cnt=0,t=1; //cnt统计质数个数,t计算当前乘积
for(int j=0;j<m;j++)
if(i>>j&1){
cnt++;
if((LL)t*p[j]>n){ //如果目前的质数乘积超出 n ,直接 break 即可 (这里可能爆 int,因此要转为 LL计算)
t=0;
break;
}
t*=p[j]; //每次相乘相当于取两者交集
}
if(t){
if(cnt&1) res+=n/t; //cnt为奇数就加上 n/t( 1~n 中能被 t 整除的数的个数)
else res-=n/t; //否则减去 n/t
}
}
cout<<res<<endl;
return 0;
}