能被整除的数(容斥原理+状态压缩)

能被整除的数

给定一个整数 n 和 m 个不同的质数 p1,p2,…,pm。

请你求出 1∼n 中能被 p1,p2,…,pm 中的至少一个数整除的整数有多少个。

输入格式
第一行包含整数 n 和 m。

第二行包含 m 个质数。

输出格式
输出一个整数,表示满足条件的整数的个数。

数据范围
1≤m≤16,
1≤n,pi≤10^9

输入样例:
10 2
2 3
输出样例:
7

解法:容斥原理+状态压缩
记 | Si | 为 1~n 中能被第 i 个质数整除的集合,则:

res = | S1∪S2∪S3∪…∪Sm |

= (| S1 | + | S2 | + | S3 | + … + | Sm |) - (| S1 ∩ S2 | + | S1 ∩ S3 | + | S2 ∩ S3 | +…+ | Sm-1 ∩ Sm |) + (…) - (…) …

规律:包含奇数个集合的符号为 + ,包含偶数个集合的符号为 -

#include <iostream>

using namespace std;

const int N=20;

typedef long long LL;

int p[N];
int m,n;

int main()
{
    cin>>n>>m;
    for(int i=0;i<m;i++) cin>>p[i];
    int res=0;
    for(int i=1;i<1<<m;i++)  //枚举 i 的所有状态 ,1表示选某个质数,0表示不选
    {
        int cnt=0,t=1; //cnt统计质数个数,t计算当前乘积
        for(int j=0;j<m;j++)
            if(i>>j&1){
                cnt++;
                if((LL)t*p[j]>n){ //如果目前的质数乘积超出 n ,直接 break 即可 (这里可能爆 int,因此要转为 LL计算)
                    t=0;
                    break;
                }
                t*=p[j];	//每次相乘相当于取两者交集
            }
        if(t){
            if(cnt&1) res+=n/t; //cnt为奇数就加上 n/t( 1~n 中能被 t 整除的数的个数)
            else res-=n/t;		//否则减去 n/t
        }
    }
    cout<<res<<endl;
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值