GAT:从GNN->GAT
(1)GNN:就是聚合相邻节点的信息,a,b,c就是普通系数。
(2)GCN:这里贴一个公式。
(3)GAT(W,a为训练参数,主要目的就是学习他两)
WA||WB是两个向量相结合,维度变为2倍,例A为(512*512)W就是(512*128),是一个线性变换矩阵, 把长向量转化为短向量,提取特征了。参数a做点乘,结果是一个确切的数字,最后做softmax。
GAT具体公式:hi就是A节点的向量表示,eij中的ij就相当两个节点A和B。简单快速教你理解图注意力网络graph attention network_哔哩哔哩_bilibili
https://www.bilibili.com/video/BV1T54y1H7Hs?spm_id_from=333.999.0.0
最后多头GAT就是学习三套(a和W参数)
GAT与GCN的联系与区别
无独有偶,我们可以发现本质上而言:GCN与GAT都是将邻居顶点的特征聚合到中心顶点上(一种aggregate运算),利用graph上的local stationary学习新的顶点特征表达。不同的是GCN利用了拉普拉斯矩阵,GAT利用attention系数。一定程度上而言,GAT会更强,因为 顶点特征之间的相关性被更好地融入到模型中。
6.2 为什么GAT适用于有向图?
我认为最根本的原因是GAT的运算方式是逐顶点的运算(node-wise),这一点可从公式(1)—公式(3)中很明显地看出。每一次运算都需要循环遍历图上的所有顶点来完成。逐顶点运算意味着,摆脱了拉普利矩阵的束缚,使得有向图问题迎刃而解。
为什么GAT适用于inductive任务?
GAT中重要的学习参数是 与 ,因为上述的逐顶点运算方式,这两个参数仅与1.1节阐述的顶点特征相关,与图的结构毫无关系。所以测试任务中改变图的结构,对于GAT影响并不大,只需要改变 ,重新计算即可。
与此相反的是,GCN是一种全图的计算方式,一次计算就更新全图的节点特征。学习的参数很大程度与图结构相关,这使得GCN在inductive任务上遇到困境。