理论基础
回溯法解决的问题
- 组合问题:N个数里面按一定规则找出k个数的集合
- 切割问题:一个字符串按一定规则有几种切割方式
- 子集问题:一个N个数的集合里有多少符合条件的子集
- 排列问题:N个数按一定规则全排列,有几种排列方式
- 棋盘问题:N皇后,解数独等等
如何理解回溯法
回溯法解决的问题都可以抽象为树形结构,是的,我指的是所有回溯法的问题都可以抽象为树形结构!
因为回溯法解决的都是在集合中递归查找子集,集合的大小就构成了树的宽度,递归的深度就构成了树的深度。
递归就要有终止条件,所以必然是一棵高度有限的树(N叉树)。
77.组合
- 题目链接:77.组合
- 回溯
class Solution(object):
def backtracking(self, n, k, path, result, startidx):
if len(path)==k:
result.append(list(path))
return
for i in range(startidx, n+1):
path.append(i)
self.backtracking(n, k, path, result, i+1)
path.pop()
def combine(self, n, k):
"""
:type n: int
:type k: int
:rtype: List[List[int]]
"""
result = []
path = collections.deque()
self.backtracking(n,k,path,result,1)
return result
- 剪枝
class Solution(object):
def backtracking(self, n, k, path, result, startidx):
if len(path)==k:
result.append(list(path))
return
for i in range(startidx, n - (k - len(path)) + 2):
path.append(i)
self.backtracking(n, k, path, result, i+1)
path.pop()
def combine(self, n, k):
"""
:type n: int
:type k: int
:rtype: List[List[int]]
"""
result = []
path = collections.deque()
self.backtracking(n,k,path,result,1)
return result