一、回溯算法理论基础
回溯其实是一种递归函数
回溯的本质是穷举,穷举所有可能,然后选出我们想要的答案,并不是很高效的算法
回溯法解决的问题:
组合问题:N个数里面按一定规则找出k个数的集合
切割问题:一个字符串按一定规则有几种切割方式
子集问题:一个N个数的集合里有多少符合条件的子集
排列问题:N个数按一定规则全排列,有几种排列方式(组合是不强调元素顺序的,排列是强调元素顺序。组合无序,排列有序)
棋盘问题:N皇后,解数独等等
回溯法解决的问题都可以抽象为树形结构,因为回溯法解决的都是在集合中递归查找子集,集合的大小就构成了树的宽度,递归的深度,就构成了树的深度。
只要有递归,就会有终止条件,因此必是一棵高度有限的N叉树
回溯法模板:
回溯函数模板返回值以及参数:返回值一般为void,参数并不好确定,所以先写逻辑再定参数
void backtracking(参数)
回溯函数终止条件:一般是搜索到叶子节点就把答案存放起来并结束递归
if (终止条件) {
存放结果;
return;
}
回溯搜索的遍历过程:for循环就是遍历集合区间,可以理解一个节点有多少个孩子,这个for循环就执行多少次。for循环可以理解是横向遍历,backtracking(递归)就是纵向遍历
for (选择:本层集合中元素(树中节点孩子的数量就是集合的大小)) {
处理节点;
backtracking(路径,选择列表); // 递归
回溯,撤销处理结果
}
总体的代码模板:
void backtracking(参数) {
if (终止条件) {
存放结果;
return;
}
for (选择:本层集合中元素(树中节点孩子的数量就是集合的大小)) {
处理节点;
backtracking(路径,选择列表); // 递归
回溯,撤销处理结果
}
}
二、77 组合
思路:横向遍历宽度,纵向递归,需要注意的是在将arr加入result的时候需要进行拷贝,不然的话会影响到arr,进而影响到拷贝进result数组的arr,将result数组回溯。
代码:
var combine = function(n, k) {
var result = [];
var backtracking = function(startIndex, arr) {
if (arr.length == k) {
// 这里把它拷贝一下,才可以让在递归中修改arr的问题得到解决,不影响result
result.push(arr.slice(0));
return;
}
// 剪枝操作:每一行的位置是有限的,比如说k和n都为4,那第一层只能取1,不能取后面的了
for (let i=startIndex; i<=n - (k - arr.length) + 1; i++) {
arr.push(i);
backtracking(i + 1, arr);
arr.pop();
}
}
backtracking(1, []);
return result;
};
剪枝的原理图:
今日学习时长:1h左右
总结:回溯算法比较难懂,还需要再看看,而且没有想到需要涉及到数组复制的问题,下次需要注意。