题意:
给一段序列,要求分别输出长度为1-n的子串中最大的最小值
题解:
用单调栈求出每一个数往左和往右第一个比他小的数,这样当该数字作为答案时,他就是最小值。 需要注意的是,长度短的答案由长度长的答案确定,比如长度为4的答案为10,那么当用单调栈求得长度为3的答案比10小时那么应该取10作为长度为3的答案,因为可以从长度为4的字串中取一个长度为3的包含10的字串。
代码:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<stack>
#include<map>
using namespace std;
long long L[200010], R[200010];
long long n, a[200010];
stack<long long> s;
map<long long, long long> ma;
int main(){
cin>>n;
for(int i = 1; i<=n; i++){
cin>>a[i];
}
for(int i = 1; i<=n; i++){
while(s.size() && a[s.top()] >= a[i]) s.pop();
if(s.empty()) L[i] = 0;
else L[i] = s.top();
s.push(i);
}
while(s.size()) s.pop();
for(int i = n; i>=1; i--){
while(s.size() && a[s.top()] >= a[i]) s.pop();
if(s.empty()) R[i] = n+1;
else R[i] = s.top();
s.push(i);
}
/*for(int i = 1; i<=n; i++){
cout<<i<<": "<<a[i]<<" "<<L[i]<<" "<<R[i]<<endl;
}*/
for(int i = 1; i<=n; i++){
long long len = R[i]-L[i]-1;
ma[len] = max(ma[len], a[i]);
}
//long long temp = ma[n];
for(int i = n-1; i>=1; i--){
ma[i] = max(ma[i+1], ma[i]);
}
for(int i = 1; i<=n; i++){
cout<<ma[i];
if(i == n) cout<<endl;
else cout<<" ";
}
return 0;
}