KMP之自创匹配- -

给定两个串问能不能“唯一的确定”,后者是前者的子串,能的话输出在模式串中的位置,否则输出-1.

思路:主要控制当有2 3 2 3      2 3  等这种情况时的问题,可以用一个计数器来进行控制。

#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<map>
#include<queue>
#include<math.h>
#include<algorithm>
#define ll __int64
#define inf 0x3f3f3f3f
using namespace std;
int a[1000000],b[10000000];
int main()
{
    int n,m,i,j,k,p;
    while(~scanf("%d",&n))
    {
        for(i=0;i<n;i++)
        {
            scanf("%d",&a[i]);
        }
        scanf("%d",&m);
        for(i=0;i<m;i++)
        {
            scanf("%d",&b[i]);
        }
        int p=0,l,r;int ans=0;
        l=r=-1;bool vis=false,bj=false;
        for(i=0;i<n;i++)
        {
            if(a[i]==b[p])
            {
                p++;
                if( (p-1)==0)
                {
                    l=i+1;
                }
            }
            else
            {
                p=0;
            }
            if(p==m)
            {
                r=i+1;
                ans++;
                p=0;
            }
            if(ans>1)
                break;
        }
        if(l==-1||r==-1||ans>1)
        {
            printf("-1\n");
        }
        else
        {
            printf("%d %d\n",l,r);
        }
    }
    return 0;
}


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
BF算法和KMP算法都是串的模式匹配算法,但是它们的时间复杂度不同。BF算法的时间复杂度为O(m*n),其中m和n分别为主串和模式串的长度。而KMP算法的时间复杂度为O(m+n)。因此,当模式串较长时,KMP算法的效率更高。 下面是BF算法和KMP算法的介绍和演示: 1. BF算法(暴力匹配算法) BF算法是一种朴素的模式匹配算法,它的思想是从主串的第一个字符开始,依次和模式串的每个字符进行比较,如果匹配成功,则继续比较下一个字符,否则从主串的下一个字符开始重新匹配。BF算法的时间复杂度为O(m*n)。 下面是BF算法的Python代码演示: ```python def BF(main_str, pattern_str): m = len(main_str) n = len(pattern_str) for i in range(m-n+1): j = 0 while j < n and main_str[i+j] == pattern_str[j]: j += 1 if j == n: return i return -1 # 测试 main_str = 'ababcabcacbab' pattern_str = 'abcac' print(BF(main_str, pattern_str)) # 输出:6 ``` 2. KMP算法(Knuth-Morris-Pratt算法) KMP算法是一种改进的模式匹配算法,它的核心思想是利用已经匹配过的信息,尽量减少模式串与主串的匹配次数。具体来说,KMP算法通过预处理模式串,得到一个next数组,用于指导匹配过程中的跳转。KMP算法的时间复杂度为O(m+n)。 下面是KMP算法的Python代码演示: ```python def KMP(main_str, pattern_str): m = len(main_str) n = len(pattern_str) next = getNext(pattern_str) i = 0 j = 0 while i < m and j < n: if j == -1 or main_str[i] == pattern_str[j]: i += 1 j += 1 else: j = next[j] if j == n: return i - j else: return -1 def getNext(pattern_str): n = len(pattern_str) next = [-1] * n i = 0 j = -1 while i < n-1: if j == -1 or pattern_str[i] == pattern_str[j]: i += 1 j += 1 next[i] = j else: j = next[j] return next # 测试 main_str = 'ababcabcacbab' pattern_str = 'abcac' print(KMP(main_str, pattern_str)) # 输出:6 ```

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值