DeepSearch/DeepResearch 实施实用指南
- URL: A Practical Guide to Implementing DeepSearch/DeepResearch
- Added At: 2025-03-05 13:15:08
- Link To Text
TL;DR
DeepSearch是2025年新兴的搜索标准,通过迭代搜索、阅读和推理提供高质量答案。它集成了测试时计算和延迟满足技术,主要区别于DeepResearch,后者生成结构化长篇研究报告。实现细节包括系统提示、查询重写和网页内容抓取等。
Summary
-
DeepSearch简介:
- DeepSearch是2025年新兴的搜索标准,通过迭代搜索、阅读和推理,直到找到最佳答案。
- 主要公司如Google、OpenAI、Perplexity和X AI都推出了各自的DeepResearch或DeepSearch产品。
-
发展背景:
- DeepSearch的概念在2024年被称为RAG或多跳问答(multi-hop QA),但在2025年初随着DeepSeek-r1的发布而获得显著关注。
- 百度和腾讯也在其搜索产品中整合了DeepSeek-r1模型。
-
技术进步:
- 测试时计算(test-time compute)是推动DeepSearch发展的关键概念,允许模型在推理阶段使用更多计算资源,而非仅在预训练或后训练阶段。
- 延迟满足:用户接受更长的等待时间以换取更高质量的结果。
-
DeepSearch的工作原理:
- 迭代循环:通过搜索、阅读网页和推理的循环,直到找到答案或超出token预算。
- 状态机架构:LLM根据当前观察和过去动作决定下一步行动,形成一个由LLM控制的状态转换系统。
- 停止条件:基于token使用限制或失败尝试次数。
-
DeepResearch简介:
- DeepResearch在DeepSearch的基础上增加了生成结构化长篇研究报告的功能。
- 通过生成目录,然后对每个部分应用DeepSearch,最终整合所有部分以提高整体连贯性。
-
DeepSearch与DeepResearch的区别:
- 问题解决:DeepSearch专注于信息准确性和完整性,而DeepResearch关注文档规模的组织、连贯性和可读性。
- 最终呈现:DeepSearch提供简洁的答案,而DeepResearch生成多部分的长篇报告。
- 复杂性:DeepSearch的核心复杂性在于状态机架构,而DeepResearch需要管理微观(搜索)和宏观(文档)层面的复杂性。
-
实现细节:
- 系统提示:使用XML标签定义系统提示,确保生成的提示更加稳健。
- 间隙问题处理:通过FIFO队列处理间隙问题,确保所有问题共享一个上下文,避免递归方法的复杂性。
- 查询重写:查询重写是结果质量的关键因素,使用语义文本相似性模型进行跨语言查询去重。
- 网页内容抓取:使用Jina Reader API抓取网页内容,并聚合搜索引擎返回的片段作为额外知识。
-
内存管理:
- 知识与记忆:区分“知识”和“记忆”,确保LLM的上下文管理高效。
- 答案评估:答案生成和评估分开进行,使用少量示例进行一致性评估。
-
预算强制:
- 深层推理:通过预算强制确保系统进行深层推理,而非过早返回结果。
- 预算管理:设定失败尝试次数限制,并在接近预算限制时激活“野兽模式”,确保始终提供答案。
-
结论:
- DeepSearch通过将搜索过程分解为搜索、阅读和推理的步骤,克服了传统RAG系统的许多局限性。
- 在实现过程中,发现长上下文的LLM、查询扩展、网页搜索和内容抓取、以及嵌入模型在语义相似性任务中的应用都是至关重要的。