棋盘分割
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 12456 | Accepted: 4389 |
Description
将一个8*8的棋盘进行如下分割:将原棋盘割下一块矩形棋盘并使剩下部分也是矩形,再将剩下的部分继续如此分割,这样割了(n-1)次后,连同最后剩下的矩形棋盘共有n块矩形棋盘。(每次切割都只能沿着棋盘格子的边进行)
原棋盘上每一格有一个分值,一块矩形棋盘的总分为其所含各格分值之和。现在需要把棋盘按上述规则分割成n块矩形棋盘,并使各矩形棋盘总分的均方差最小。
均方差 ,其中平均值 ,x i为第i块矩形棋盘的总分。
请编程对给出的棋盘及n,求出O'的最小值。
原棋盘上每一格有一个分值,一块矩形棋盘的总分为其所含各格分值之和。现在需要把棋盘按上述规则分割成n块矩形棋盘,并使各矩形棋盘总分的均方差最小。
均方差 ,其中平均值 ,x i为第i块矩形棋盘的总分。
请编程对给出的棋盘及n,求出O'的最小值。
Input
第1行为一个整数n(1 < n < 15)。
第2行至第9行每行为8个小于100的非负整数,表示棋盘上相应格子的分值。每行相邻两数之间用一个空格分隔。
第2行至第9行每行为8个小于100的非负整数,表示棋盘上相应格子的分值。每行相邻两数之间用一个空格分隔。
Output
仅一个数,为O'(四舍五入精确到小数点后三位)。
Sample Input
3 1 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 3
Sample Output
1.633
Source
Noi 99
刘汝佳黑书的题,方法书上写的很详细,就不赘述了,这应该算是一类二维区间dp吧
刘汝佳黑书的题,方法书上写的很详细,就不赘述了,这应该算是一类二维区间dp吧
#include <map>
#include <set>
#include <list>
#include <queue>
#include <stack>
#include <vector>
#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
const int inf = 0x3f3f3f3f;
int dp[20][10][10][10][10];
int D[10][10][10][10];
int mat[20][20];
int sum[20][20];
int main()
{
int n;
while (~scanf("%d", &n))
{
double _x = 0;
memset (sum, 0, sizeof(sum));
memset (dp, inf, sizeof(dp));
for (int i = 1; i <= 8; ++i)
{
for (int j = 1; j <= 8; ++j)
{
scanf("%d", &mat[i][j]);
}
for (int j = 1; j <= 8; ++j)
{
sum[i][j] += sum[i][j - 1] + mat[i][j];
}
}
for (int j = 1; j <= 8; ++j)//预处理
{
for (int i = 1; i <= 8; ++i)
{
sum[i][j] += sum[i - 1][j];
}
}
for (int i = 1; i <= 8; ++i)
{
for (int j = 1; j <= 8; ++j)
{
for (int k = i; k <= 8; ++k)
{
for (int l = j; l <= 8; ++l)
{
D[i][j][k][l] = sum[k][l] - sum[k][j - 1] - sum[i - 1][l] + sum[i - 1][j - 1];
// printf("D[%d][%d][%d][%d] = %d\n", i, j, k, l, D[i][j][k][l]);
D[i][j][k][l] *= D[i][j][k][l];
}
}
}
}
_x = sum[8][8] * 1.0 / n;
_x *= _x;
for (int i = 1; i <= 8; ++i)
{
for (int j = 1; j <= 8; ++j)
{
for (int k = i; k <= 8; ++k)
{
for (int l = j; l <= 8; ++l)
{
dp[0][i][j][k][l] = D[i][j][k][l];
}
}
}
}
for (int i = 1; i < n; ++i)
{
for (int j = 1; j <= 8; ++j)/*x1*/
{
for (int k = 1; k <= 8; ++k)/*y1*/
{
for (int l = j; l <= 8; ++l)/*x2*/
{
for (int p = k; p <= 8; ++p)/*y2*/
{
for (int q = j; q < l; ++q)
{
dp[i][j][k][l][p] = min(min(dp[i][j][k][l][p], dp[i - 1][j][k][q][p] + D[q + 1][k][l][p]), dp[i - 1][q + 1][k][l][p] + D[j][k][q][p]);
}
for (int q = k; q < p; ++q)
{
dp[i][j][k][l][p] = min(min(dp[i][j][k][l][p], dp[i - 1][j][k][l][q] + D[j][q + 1][l][p]), dp[i - 1][j][q + 1][l][p] + D[j][k][l][q]);
}
}
}
}
}
}
double t = dp[n - 1][1][1][8][8] * 1.0 / n;
printf("%.3f\n", sqrt(t - _x));
}
return 0;
}