Stable Diffusion从理论到实践——保姆级教程

在这里插入图片描述

一. 摘要

Stable Diffusion是一个基于Latent Diffusion Models(LDMs)实现的以文生图(text-to-image generation)模型,能够生成高分辨率图像。它的原理涉及Diffusion Model(DDPM)、Attention机制和Autoencoder技术。Stable Diffusion的原理在于在潜在空间进行扩散过程,而非直接在数据空间。本文提供了对Stable Diffusion模型原理和代码实现的详细解读。
2022年8月,游戏设计师Jason Allen凭借AI绘画作品《太空歌剧院(Théâtre D’opéra Spatial)》获得美国科罗拉多州博览会“数字艺术/数码摄影“竞赛单元一等奖,“AI绘画”引发全球热议。得力于Stability AI开源了Stable Diffusion,图像AIGC现在正在快速的发展迭代。

二. 知识点回顾

在这里插入图片描述
Stable Diffusion涉及的技术有Diffusion Model(DDPM),Attention,Autoencoder,在原理讲解前,可以先回顾上述三个知识点。

1. DDPM

扩散模型包括两个过程:前向过程(forward process)和反向过程(reverse process),其中前向过程又称为扩散过程(diffusion process)。无论是前向过程还是反向过程都是一个参数化的马尔可夫链(Markov chain),其中反向过程可用于生成数据样本(它的作用类似GAN中的生成器,只不过GAN生成器会有维度变化,而DDPM的反向过程没有维度变化)。

2. Autoencoder

自动编码器由一个编码器Encoder和一个解码器Decoder组成,LDM中编码器把图像输入压缩到低维空间,待扩散结束后,用解码器将低维表达还原为原始图像维度。
在这里插入图片描述

三. Stable Diffusion

Stable Diffusion是一个基于Latent Diffusion Models(LDMs)的以文生图模型的实现,因此掌握LDMs,就掌握了Stable Diffusion的原理,Latent Diffusion Models(LDMs)的论文是《High-Resolution Image Synthesis with Latent Diffusion Models》。本文内容是对该论文的详细解读。

1. LDMs方法简介

为了降低训练扩散模型的算力,LDMs使用一个Autoencoder去学习能尽量表达原始image space的低维空间表达(latent embedding),这样可以大大减少需要的算力。
在这里插入图片描述
公式符号说明:
在这里插入图片描述

2. LDMs核心要点

LDMs相比DDPM最大的两点改进如下: 1. 加入Autoencoder(上图中左侧红色部分),使得扩散过程在latent space下,提高图像生成的效率; 2. 加入条件机制,能够使用其他模态的数据控制图像的生成(上图中右侧灰色部分),其中条件生成控制通过Attention(上图中间部分QKV)机制实现。

3. LDMs目标函数

在这里插入图片描述

4. 条件图像生成

回顾DDPM:DDPM的UNet可以根据当前采样的t预测noise,但没有引入其他额外条件。但是LDMs实现了“以文生图”,“以图生图”等任务,就是因为LDMs在预测noise的过程中加入了条件机制,即通过一个编码器(encoder)将条件和Unet连接起来。

条件控制生成原理
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

5. LDM整体架构图

训练阶段每个模块之间的交互如下图,结合上述公式,可以看出TextEncoder、AutoEncoder、DDPM、Cross-Attention在训练阶段的交互逻辑。
在这里插入图片描述

推理阶段每个模块之间的交互如下图,推理阶段每个模块之间的交互如下图,结合上述公式,可以看出TextEncoder、AutoDecoder、DDPM、Cross-Attention在训练阶段的交互逻辑。
在这里插入图片描述

四. 核心代码讲解(MindSpore版本Wukong-Huahua)

代码仓库地址:https://github.com/mindspore-lab/minddiffusion/tree/main/vision/wukong-huahua
LDMs代码包含几个核心组件,从训练阶段的过程来逐步讲解代码。

1. AutoEncoderKL 自编码器:将图像映射到 latent space

文件位置:stablediffusionv2/ldm/models/autoencoder.py

AutoEncoderKL 编码器已提前训练好,参数是固定的。训练阶段该模块负责将输入数据集映射到latent space,然后latent space的样本再继续进入扩散模型进行扩散。这一过程在Stable Diffusion代码中被称为encode_first_stage。

def get_input(self, x, c):
        if len(x.shape) == 3:
            x = x[..., None]
        x = self.transpose(x, (0, 3, 1, 2))
        z = ops.stop_gradient(self.scale_factor * self.first_stage_model.encode(x))

        return z, c

2. FrozenCLIPEmbedder:将控制条件编码为向量

文件位置:stablediffusionv2/ldm/modules/encoders/modules.py。

其核心模块class TextEncoder(nn.Cell)构建函数如下:

def construct(self, text):
        bsz, ctx_len = text.shape
        flatten_id = text.flatten()
        gather_result = self.gather(self.embedding_table, flatten_id, 0)
        x = self.reshape(gather_result, (bsz, ctx_len, -1))
        x = x + self.positional_embedding
        x = x.transpose(1, 0, 2)
        x = self.transformer_layer(x)
        x = x.transpose(1, 0, 2)
        x = self.ln_final(x)
        return x

从上述代码可以看出,TextEncoder先将文本转换为向量。

3. UNet

UNet的layers代码示例如下:

layers.append(AttentionBlock(
                            ch,
                            use_checkpoint=use_checkpoint,
                            num_heads=num_heads,
                            num_head_channels=dim_head,
                            use_new_attention_order=use_new_attention_order,
                        ) if not use_spatial_transformer else SpatialTransformer(
                            ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
                            use_checkpoint=use_checkpoint, dtype=self.dtype, dropout=self.dropout, use_linear=use_linear_in_transformer
                        )
                    )
self.input_blocks.append(layers)

从上述代码可以看出UNet的每个中间层都会拼接一次SpatialTransformer模块,该模块对应,使用Attention机制来更好的学习文本与图像的匹配关系。

def construct(self, x, timesteps=None, context=None, y=None):
        """
        Apply the model to an input batch.
        :param x: an [N x C x ...] Tensor of inputs.
        :param timesteps: a 1-D batch of timesteps.
        :param context: conditioning plugged in via crossattn
        :param y: an [N] Tensor of labels, if class-conditional.
        :return: an [N x C x ...] Tensor of outputs.
        """

        assert (y is not None) == (
            self.num_classes is not None
        ), "must specify y if and only if the model is class-conditional"
        hs = []
        t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
        emb = self.time_embed(t_emb)

        if self.num_classes is not None:
            assert y.shape == (x.shape[0],)
            emb = emb + self.label_emb(y)

        h = x
        for celllist in self.input_blocks:
            for cell in celllist:
                h = cell(h, emb, context)
            hs.append(h)

        for module in self.middle_block:
            h = module(h, emb, context)

        hs_index = -1
        for celllist in self.output_blocks:
            h = self.cat((h, hs[hs_index]))
            for cell in celllist:
                h = cell(h, emb, context)
            hs_index -= 1

        if self.predict_codebook_ids:
            return self.id_predictor(h)
        else:
            return self.out(h)

4. LDMs:扩散模型,用于生成对应采样时间t的样本

LDMs核心代码如下:

def p_losses(self, x_start, cond, t, noise=None):
        noise = ms.numpy.randn(x_start.shape)
        x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise) // time=t时加噪后的样本
        model_output = self.apply_model(x_noisy, t, cond) // UNet预测的噪声,cond表示FrozenCLIPEmbedder生成的条件

        if self.parameterization == "x0":
            target = x_start
        elif self.parameterization == "eps":
            target = noise
        else:
            raise NotImplementedError()

        loss_simple = self.get_loss(model_output, target, mean=False).mean([1, 2, 3]) //计算预测noise与真实noise的损失值

        logvar_t = self.logvar[t]
        loss = loss_simple / ops.exp(logvar_t) + logvar_t
        loss = self.l_simple_weight * loss.mean()

        loss_vlb = self.get_loss(model_output, target, mean=False).mean((1, 2, 3))
        loss_vlb = (self.lvlb_weights[t] * loss_vlb).mean()
        loss += (self.original_elbo_weight * loss_vlb)

        return loss

self.apply_model代码如下:

def apply_model(self, x_noisy, t, cond, return_ids=False):
        x_noisy = ops.cast(x_noisy, self.dtype)
        cond = ops.cast(cond, self.dtype)

        if isinstance(cond, dict):
            # hybrid case, cond is expected to be a dict
            pass
        else:
            key = 'c_concat' if self.model.conditioning_key == 'concat' else 'c_crossattn'
            cond = {key: cond}

        x_recon = self.model(x_noisy, t, **cond) // self.model表示UNet模型

        if isinstance(x_recon, tuple) and not return_ids:
            return x_recon[0]
        else:
            return x_recon

LDMs将损失函数反向传播来更新UNet模型的参数,AutoEncoderKL和FrozenCLIPEmbedder的参数在该反向传播中不会被更新。
从上述代码可以看出UNet的每个中间层都会拼接一次SpatialTransformer模块,该模块对应,使用Attention机制来学习文本与图像的匹配关系。
在这里插入图片描述

五. 部署实践

1. 下载模型

# 更多精彩,请关注微信公众号:AIWorkshopLab
# pip install modelscope
modelscope download --model stabilityai/stable-diffusion-3-medium

2. 推理代码

import torch
import os
from diffusers import StableDiffusion3Pipeline

model_path = os.path.expanduser("/home/xxx/.cache/modelscope/hub/models/stabilityai/stable-diffusion-3-medium-diffusers")

pipe = StableDiffusion3Pipeline.from_pretrained(model_path, torch_dtype=torch.float16)
pipe = pipe.to("cuda")

image = pipe(
    "A cat holding a sign that says hello world",
    negative_prompt="",
    num_inference_steps=28,
    guidance_scale=7.0,
).images[0]
image.save("AIWorkshopLab.jpg")
# 更多精彩,请关注微信公众号:AIWorkshopLab

生成效果:
在这里插入图片描述

下一篇:ControlNet可控生成从理论到实践——保姆级教程

推荐阅读:
SD前沿:https://zhuanlan.zhihu.com/p/684068402
用自己的数据集:https://github.com/huggingface/diffusers/blob/main/examples/custom_diffusion/README.md

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值