人工智能
文章平均质量分 62
CV-deeplearning
小米AI Lab图像算法工程师,擅长表格识别、目标检测、行人属性识别、车牌识别等。
展开
-
模拟相机拍照——对文档进行数据增强
这里介绍的就是文档数据增强,用标准文档模拟相机拍照场景。该方法不仅能用于文档各场景的数据增强,用于OCR检测识别等任务;还能合成各种图片训练对,用于文档去阴影、文档去摩尔纹、文档弯曲矫正等各项任务。然而,当图片是手机拍照获取的,图片中往往有阴影、摩尔纹、弯曲。原理:利用渲染工具(推荐blender),渲染出各种弯曲、阴影、摩尔纹,然后再pdf图片上进行合成。那么,如何通过标准的文档,获得类似相机拍照的图片呢?欢迎小伙伴们技术交流~原创 2024-04-18 17:32:27 · 858 阅读 · 0 评论 -
CLIP原理解读——大模型论文阅读笔记一
模型的输入是图片和文字的配对,图片输入到图片的encoder得到一些特征,文本输入到文本的encoder得到一些特征,每个traning batch里有n个图片-文本对,就能得到n个图片的特征和n个文本的特征,然后在这些特征上做对比学习,对比学习非常灵活,就需要正样本和负样本的定义,其它都是正常套路(不懂对比学习),配对的图片-文本对就是正样本,描述的是同一个东西,特征矩阵里对角线上的都是正样本,矩阵中非对角线上的元素都是负样本,有了正负样本,模型就可以通过对比学习的方式去训练了,不需要任何手工标注。原创 2023-06-07 09:21:26 · 8617 阅读 · 4 评论 -
图片去重算法(图片数量十万级以下)
经常遇到一种情况,手机或者电脑里面的图片太多并且存在重复的图片。这些重复的图片浪费设备的内存,同时也提高了处理这些数据的成本。博主是学AI的,因此基于神经网络开发了一个图片去重算法。原创 2023-06-05 13:07:03 · 1587 阅读 · 0 评论 -
Deep Adversarial Decomposition: A Unified Framework for Separating Superimposed Images 论文阅读笔记
1. 论文与代码 论文下载地址:Deep Adversarial Decomposition: A Unified Framework for Separating Superimposed Images 官方代码地址:https://github.com/jiupinjia/Deep-adversarial-decomposition2. 论文核心思想 作者提出了一个统一的框架,用来分离图片。作者提出crossroad L1损失函数,该损失函数能计...原创 2021-04-25 21:01:59 · 507 阅读 · 0 评论 -
编译问题:clang++: error: unable to execute command: Killed
一. 背景介绍当我在手机端部署模型时,用mace转模型成功,但是在编译时出错。错误栈给了很多提示,其中一句提示就是:clang++: error: unable to execute command: Killed。二. 分析问题与解决该提示指的是内存不够,我的进程操作被杀掉了;解决方法就是增大swap分区的空间。于是我在网上查找解决方法,运行下面命令即可:sudo fallocate -l 4G /swapfilesudo chmod 600 /swapfilesudo mkswap /sw原创 2021-07-21 16:38:47 · 3364 阅读 · 0 评论 -
如何画深度学习论文中的网络框架和技术方案?
一. 推荐一个工程工程地址:https://github.com/dair-ai/ml-visuals二. 用法1. 从该工程中下载PPT,该PPT(100多页)中包含很多神经网络的基本组件。2. 根据你的设计需求,拷贝里面的基本组件或者修改里面的组件,设计出你要的方案。3. 只需要你基本的PPT操作,就像搭积木一样设计好你自己的方案。如果你下载的PPT没有修改权限,请联系博主。参考博客:https://blog.csdn.net/qq_15698613/article/details/116原创 2021-07-19 17:40:25 · 705 阅读 · 0 评论 -
Auto-Exposure Fusion for Single-Image Shadow Removal——论文阅读
一. 论文介绍 本文主要介绍去除阴影的论文《Auto-Exposure Fusion for Single-Image Shadow Removal》:即自动曝光融合去除阴影的方法。该论文来自2021年的CVPR。 论文地址:https://arxiv.org/abs/2103.01255 开源代码:https://github.com/tsingqguo/exposure-fusion-shadow-removal二. 算法框架 ...原创 2021-06-09 09:54:25 · 2431 阅读 · 12 评论 -
onnx 模型转换及推理时间对比
1. 环境准备 对比时间,和模型训练的环境相同,可能额外要安装的包是onnxruntime.pip install onnxruntime # for cpupip install onnxruntime-gpu # for gpu2. 测试过程 直接上代码吧,代码就是最好的解释。import cv2import timeimport torchimport numpy as npfrom torch.nn import DataParalle...原创 2021-04-29 20:53:44 · 4369 阅读 · 1 评论 -
MACE的环境搭建——conda实现
1.MACE 主页 MACE 的github地址:https://github.com/XiaoMi/mace 小米官方的相关文档:https://mace.readthedocs.io/en/latest/ 对开发环境的要求,可以按照以下指令安装相关的包:2. 创建虚拟环境并安装常见的包 (1) 创建虚拟环境,我把虚拟环境命名为maceconda create -n mace python=3.6 (2)...原创 2021-04-28 09:51:58 · 757 阅读 · 0 评论 -
3D人脸识别——点云转化为可训练的图片
3D人脸识别时,需要对点云进行处理,生成可训练的图片形式,本文带你完成前期的数据处理过程。原创 2021-03-19 18:23:19 · 3475 阅读 · 11 评论 -
行人属性识别,PA100K
行人属性识别,即识别行人的多个特征,例如:性别、年龄、戴帽子、戴眼镜等。本文将带你学习行人属性识别,主要用到的是multitask技术。原创 2021-02-07 09:49:40 · 7162 阅读 · 28 评论 -
pytorch模型转成pt(c++可调用)
将训练的pytorch模型转化为pt(c++可调用),本文主要接受用trace转化方法。原创 2020-09-27 13:31:19 · 4861 阅读 · 3 评论